首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two efficient recursive algorithms epsilon-algorithm and eta-algorithm are introduced to compute the generalized inverse function-valued Padé approximants. The approximants were used to accelerate the convergence of the power series with function-valued coefficients and to estimate characteristic value of the integral equations. Famous Wynn identities of the Padé approximants is also established by means of the connection of two algorithms. Foundation items: the National Natural Science Foundation of China (10271074) Biographies: LI Chun-jing (1958 −) GU Chuan-qing (1955 −)  相似文献   

2.
Two efficient recursive algorithms epsilon- algorithm and eta-algorithm are approximants were used to accelerate the convergence of the power series with functionvalued coefficients and to estimate characteristic value of the integral equations. Famous two algorithms.  相似文献   

3.
The paper deals with a direct central impact of two infinite cylindrical bodies having differently shaped cross sections and made of different materials. A nonstationary plane problem of elasticity is solved. The contact boundary is moving and determined during the solution. A mixed boundary-value problem is formulated. Its solution has the form of Fourier series. Satisfying mixed boundary conditions gives an infinite system of Volterra equations of the second kind for the unknown coefficients of the series. The basic characteristics of the impact process and their dependence on the physical and mechanical properties of the bodies are determined numerically Translated from Prikladnaya Mekhanika, Vol. 45, No. 2, pp. 36–45, February 2009.  相似文献   

4.
Closed form solution of quadruple integral equations involving inverse Mellin transforms has been obtained. The solution of quadruple integral equations is used in solving a two dimensional four-part mixed boundary value contact problem for an elastic wedge-shaped region as an application. Closed form expression for shear stress has been obtained. Finally, numerical results for shear stress are obtained and shown graphically.  相似文献   

5.
In this paper, the behavior of a Griffith crack at the interface of a layer boned to a half plane subjected to a uniform tension is investigated by use of the Schmidt method under the assumptions that the effect of the crack surface overlapping very near the crack tips is negligible and also there is a sufficiently large component of mode-I loading so that the crack essentially remains open. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the crack length, the thickness of the material layer and the materials constants upon the stress intensity factor of the crack. As a special case in our solution, we also give the solution of the ordinary crack in homogeneous materials. Contrary to the previous solution of the interface crack problem, it is found that the stress singularities of the present interface crack solution are similar with ones for the ordinary crack in homogeneous materials.  相似文献   

6.
The paper analyzes numerically the passages to the limit in the dynamic problem for a penny-shaped crack at the interface between dissimilar linear elastic, homogeneous, isotropic materials as either the frequency of harmonic load or the difference between the properties of the materials decreases. It is shown that as the frequency decreases, the solution of the dynamic problem tends to that of the static problem, and as the physical and mechanical properties of the materials become less different, the original problem goes into the dynamic problem for a crack in a homogeneous body __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 26–34, July 2008.  相似文献   

7.
Summary An elementary solution for the multiple circular arc problem is obtained in this paper. The elementary solution is defined as a particular case of the single circular arc crack problem, in which remote stresses are equal to zero, and two pairs of concentrated forces are applied at a prescribed point of crack face. By using the principle of superposition, Fredholm integral equation for the multiple circular arc problem in plane elasticity is obtained. The suggested approach is illustrated by several numerical examples. If a smaller arc crack is surrounded by a larger arc crack, the stress intensity factors for the former become rather small. The phenomenon of shielding is illustrated by examples. Accepted for publication 17 September 1996  相似文献   

8.
This paper deals with the antiplane magnetoelectroelastic problem of an internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane. The properties of the material such as elastic modulus, piezoelectric constant, dielectric constant, piezomagnetic coefficient, magnetoelectric coefficient and magnetic permeability are assumed in exponential forms and vary along the crack direction. Fourier transforms are used to reduce the impermeable and permeable crack problems to a system of singular integral equations, which is solved numerically by using the Gauss-Chebyshev integration technique. The stress, electric displacement and magnetic induction intensity factors at the crack tips are determined numerically. The energy density theory is applied to study the effects of nonhomogeneous material parameter β, edge conditions, location of the crack and load ratios on the fracture behavior of the internal crack.  相似文献   

9.
Edge effects in a rectangular sandwich plate with isotropic components are studied. The mathematical model is represented by the homogeneous equations of linear elasticity, which is indicative of an approximate approach in edge-effect theory. The initial equations are reduced to inhomogeneous ones and an exact problem is formulated. Approximate solutions are found by the mesh method. Discrete problems are based on the concept of base scheme. The mesh equations are written in an explicit form and then solved using a computation optimization procedure. As an example, edge-effect zones in a real composite are analyzed.__________Translated from Prikladnaya Mekhanika, Vol. 40, No. 12, pp. 124–133, December 2004.  相似文献   

10.
In this paper, the behavior of four parallel symmetric cracks in a piezoelectric material under anti-plane shear loading is studied by the Schmidt method for the permeable crack surface boundary conditions. By use of the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations that the unknown variables are the jumps of the displacement across the crack surfaces. These equations are solved by means of the Schmidt method. The results show that the stress and the electric displacement intensity factors of cracks depend on the geometry of the crack. Contrary to the impermeable crack surface condition solution, it is found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller than the results for the impermeable crack surface conditions.  相似文献   

11.
The plane asymmetric problem of vertical impact of a rigid body against the surface of a compressible fluid is considered. It is assumed that the penetrating circular cylinder has a shifted center of mass. Solution of the boundary-value problem is reduced to solution of an infinite system of linear integral Volterra equations of the second kind. We present an analysis of the results as a function of initial values of the angle of asymmetry. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev; Ukranian Transportation Institute, Kiev. Translated from Prikladnaya Mekhanika, Vol. 35, No. 8, pp. 61–70, August, 1999.  相似文献   

12.
A study is made of the asymptotic behavior of the Green's function of the Cauchy—Poisson problem in the far zone near the wave front, i.e., for r c0t, where is the maximal group velocity of a surface wave. It is shown that the solution to this problem given in the book by LeBlond and Mysak [1] is incorrect, and the correct asymptotic behavior, expressed in terms of the square of an Airy function, is given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 173–174, March–April, 1984.We thank Yu. L. Gazaryan for interest in the present work.  相似文献   

13.
The rotational motion of a rigid dynamical system including a three dimensional elastic part about a fixed point is studied. The system is under the action of a general gravitational field. The stability anlysis is carried out by expanding the displacement of the deformable part in terms of orthonormalized functions with the independent coefficients. Results are obtained easily based on Routh's equation and Andoyer variables. The system is found to be stable provided that the dissipation energy is minimum corresponds to the case of axially symmetric deformation. On the other hand, the system is unstable, when the angular momentum vector is parallel to the equatorial plane.  相似文献   

14.
B. W. Skews 《Shock Waves》1991,1(3):205-211
This paper deals with the waves that are reflected from slabs of porous compressible foam attached to a rigid wall when impacted by a weak shock wave. The interest is in establishing possible attenuation of the pressure field after a shock or blast wave has struck the surface. Foam densities from 14 to 38 kg/m3 were tested over a range of shock wave Mach numbers less than 1.4. It is shown that the initial reflected shock wave strength is accurately predicted by the pseudo-gas model of Gelfand et al. (1983), with a pressure ratio of approximately 80% of the value for reflection off a rigid wall. Evidence is presented of gas entering the foam during the early stages of the process. A second wave emerges from the foam at a later stage and is separated from the first by a region of constant velocity and pressure. This second wave is not a shock wave but a compression front of significant thickness, which emerges from the foam earlier than predicted by the pseudo-gas model. Analysis of the origin of this wave points to much more complex flows within the foam than previously assumed, particularly in an apparent decrease in average wave front speed as the foam is compressed. It is shown that the pressure ratio across both these waves taken together is slightly higher than that for reflection off a rigid wall. In some cases this compression wave train is followed by a weak expansion wave.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

15.
In this paper, the scattering of elastic waves by an interface crack with linear adhesive tips in a layered half space is considered. By use of integral transform and integral equation methods, the singular integral equations of this problem are derived, which are transformed into a set of algebraic equations by means of contour integration and Chebyshev polynomials expanding technique. The numerical results of the adhesive region and stress amplitudes are given in this paper.  相似文献   

16.
The solution of a dynamic problem for calculation of a displacement field on a half-space surface caused by an internal mode I crack opening is presented. The problem is reduced to the system of boundary integral equations (BIEs). The equations of motion are solved with the use of Helmholtz potentials and applying Fourier integral transform. The effects of the crack size, the crack depth and the distance from the crack epicenter to the observation point on the parameters of elastic waves are investigated. It is established that the increasing of the defect size leads to narrowing bandwidth of elastic waves and to lowering of center frequency. The analysis given here can be used for identification of the crack growth during technical diagnostic of an industry objects and structural elements by AE method.  相似文献   

17.
Summary In this paper, the behavior of a crack in functionally graded piezoelectric/piezomagnetic materials subjected to an anti-plane shear loading is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using a Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. These equations are solved using the Schmidt method. The relations among the electric displacement, the magnetic flux and the stress field near the crack tips are obtained. Numerical examples are provided to show the effect of the functionally graded parameter on the stress intensity factors of the crack.The authors are grateful for financial support from the Natural Science Foundation of Hei Long Jiang Province (A0301), the National Natural Science Foundation of China (50232030, 10172030), the Natural Science Foundation with Excellent Young Investigators of Hei Long Jiang Province(JC04-08) and the National Science Foundation with Excellent Young Investigators (10325208).  相似文献   

18.
Summary In this paper, the global behavior of relative equilibrium states of a three-body satellite with flexible connection under the action of the gravitational torque is studied. With geometric method, the conditions of existence of nontrivial solutions to the relative equilibrium equations are determined. By using reduction method and singularity theory, the conditions of occurrence of bifurcation from trivial solutions are derived, which agree with the existence conditions of nontrivial solutions, and the bifurcation is proved to be pitchfork-bifurcation. The Liapunov stability of each equilibrium state is considered, and a stability diagram in terms of system parameters is presented. Received 10 March 1998; accepted for publication 21 July 1998  相似文献   

19.
In this paper, a new vector‐filtering criterion for dynamic modes selection is proposed that is able to extract dynamically relevant flow features from dynamic mode decomposition of time‐resolved experimental or numerical data. We employ a novel modes selection criterion in parallel with the classic selection based on modes amplitudes, in order to analyze which of these procedures better highlight the coherent structures of the flow dynamics. Numerical tests are performed on two distinct problems. The efficiency of the proposed criterion is proved in retaining the most influential modes and reducing the size of the dynamic mode decomposition model. By applying the proposed filtering mode technique, the flow reconstruction error is shown to be significantly reduced. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The stability against small disturbances of the pressure-driven plane laminar motion of an electrically conducting fluid under a transverse magnetic field is investigated. Assuming that the outer regions adjacent to the fluid layer are electrically non-conducting and not ferromagnetic, the appropriate boundary conditions on the magnetic field perturbations are presented. The Chebyshev collocation method is adopted to obtain the eigenvalue equation, which is then solved numerically. The critical Reynolds number Rc, the critical wave number αc, and the critical wave speed cc are obtained for wide ranges of the magnetic Prandtl number Pm and the Hartmann number M. It is found that except for the case when Pm is sufficiently small, the magnetic field has both stabilizing and destabilizing effects on the fluid flow, and that for a fixed value of M the fluid flow becomes more unstable as Pm increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号