首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first examples of mixed metal trinuclear clusters carrying N-heterocyclic carbene (NHC) ligands were isolated from reactions of the complexes [Ni(NHC)ClCp] [NHC = bis-(2,6-diisopropylphenyl)- or bis-(2,4,6-trimethylphenyl)-imidazol-2-ylidene] with [Mo(CO)(3)Cp](-); the unsaturated 46-electron clusters have triangular MoNi(2) cores and the reaction pathway activates usually inert Ni-Cp and Ni-NHC bonds.  相似文献   

2.
S. Matsukawa  J. Kimura 《合成通讯》2016,46(23):1947-1952
This study examines the catalytic efficacy of 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) in the cyanosilylation of aldehydes and ketones. In an aldehyde reaction, the corresponding products were obtained at high yield using minimal TBD (0.01?mol%). TBD was similarly effective in various ketone reactions.  相似文献   

3.
[reactions: see text] A rhodium complex of N-heterocyclic carbene (NHC) has been developed for intra- and intermolecular [4 + 2] and intramolecular [5 + 2] cycloaddition reactions. This is the first use of a transition-metal NHC complex in a Diels-Alder-type reaction. For the intramolecular [4 + 2] cycloaddition reactions, all the dienynes studied were converted to their corresponding cycloadducts in 91-99% yields within 10 min. Moreover, up to 1900 turnovers have been obtained for the intramolecular [4 + 2] cycloaddition at 15-20 degrees C. For the intermolecular [4 + 2] cycloadditions, high yields (71-99%) of the corresponding cycloaddition products were obtained. The reaction time and yield were highly dependent upon the diene and the dienophile. For the intramolecular [5 + 2] cycloaddition reactions, all the alkyne vinylcyclopropanes studied were converted to their corresponding cycloadducts in 91-98% yields within 10 min. However, the catalytic system was not effective for an intermolecular [5 + 2] cycloaddition reaction.  相似文献   

4.
Highly enantioselective [3+3] and [3+4] annulations of isatin‐derived enals with ethynylethylene carbonates and ethynyl benzoxazinanones are enabled by NHC/cooper cooperative catalysis, leading to a big library of spirooxindole derivatives in high structural diversity and enantioselectivity (up to 99 % ee). Both reactions represent a nicely synergistic integration of NHC and copper catalysis, in which both catalysts activate the substrates and the chiral NHC perfectly controls the stereochemistry.  相似文献   

5.
[reaction: see text] N-Heterocyclic carbene (NHC) complexes with silver were investigated as sources of unsaturated NHC carbene catalysts via thermal decomposition. The NHC complex (1-ethyl-3-methylimidazol-2-ylidene)silver(I) chloride is an ionic liquid, and was found to catalyze the ring-opening polymerization of lactide at elevated temperatures to give narrowly dispersed polylactide of predictable molecular weight. Silver-carbene complexes can also be used for the catalysis of small molecule transesterification reactions. Thermolysis of the silver complexes in the presence of CS(2) yielded the zwitterionic CS(2) adducts of the carbene, implicating the intermediacy of the free carbene in these reactions.  相似文献   

6.
One of the most challenging questions in the Lewis base organocatalyst field is how to predict the most electrophilic carbon for the complexation of N‐heterocyclic carbene (NHC) and reactant. This study provides a valuable case for this issue. Multiple mechanisms (A, B, C, D, and E) for the intramolecular cyclization of aldimine catalyzed by NHC were investigated by using density functional theory (DFT). The computed results reveal that the NHC energetically prefers attacking the iminyl carbon (AIC mode, which is associated with mechanisms A and C) rather than attacking the olefin carbon (AOC mode, which is associated with mechanisms B and D) or attacking the carbonyl carbon (ACC mode, which is associated with mechanism E) of aldimine. The calculated results based on the different reaction models indicate that mechanism A (AIC mode), which is associated with the formation of the aza‐Breslow intermediate, is the most favorable pathway. For mechanism A, there are five steps: (1) nucleophilic addition of NHC to the iminyl carbon of aldimine; (2) [1,2]‐proton transfer to form an aza‐Breslow intermediate; (3) intramolecular cyclization; (4) the other [1,2]‐proton transfer; and (5) regeneration of NHC. The analyses of reactivity indexes have been applied to explain the chemoselectivity, and the general principles regarding the possible mechanisms would be useful for the rational design of NHC‐catalyzed chemoselective reactions.  相似文献   

7.
Russian Journal of Organic Chemistry - 5-[3(4)-R-Adamantan-1-yl]salicylic acids [R = H, Alk, Ar, OH, NHC(S)NH2] have been synthesized by electrophilic substitution reactions of hydroxy- and...  相似文献   

8.
Imidazolium salts (NHCewg ? HCl) with electronically variable substituents in the 4,5‐position (H,H or Cl,Cl or H,NO2 or CN,CN) and sterically variable substituents in the 1,3‐position (Me,Me or Et,Et or iPr,iPr or Me,iPr) were synthesized and converted into the respective [AgI(NHC)ewg] complexes. The reactions of [(NHC)RuCl2(CHPh)(py)2] with the [AgI(NHCewg)] complexes provide the respective [(NHC)(NHCewg)RuCl2(CHPh)] complexes in excellent yields. The catalytic activity of such complexes in ring‐closing metathesis (RCM) reactions leading to tetrasubstituted olefins was studied. To obtain quantitative substrate conversion, catalyst loadings of 0.2–0.5 mol % at 80 °C in toluene are sufficient. The complex with the best catalytic activity in such RCM reactions and the fastest initiation rate has an NHCewg group with 1,3‐Me,iPr and 4,5‐Cl,Cl substituents and can be synthesized in 95 % isolated yield from the ruthenium precursor. To learn which one of the two NHC ligands acts as the leaving group in olefin metathesis reactions two complexes, [(FL‐NHC)(NHCewg)RuCl2(CHPh)] and [(FL‐NHCewg)(NHC)RuCl2(CHPh)], with a dansyl fluorophore (FL)‐tagged electron‐rich NHC ligand (FL‐NHC) and an electron‐deficient NHC ligand (FL‐NHCewg) were prepared. The fluorescence of the dansyl fluorophore is quenched as long as it is in close vicinity to ruthenium, but increases strongly upon dissociation of the respective fluorophore‐tagged ligand. In this manner, it was shown for ring‐opening metathesis ploymerization (ROMP) reactions at room temperature that the NHCewg ligand normally acts as the leaving group, whereas the other NHC ligand remains ligated to ruthenium.  相似文献   

9.
The N-heterocyclic carbene stabilized phosphinidenides (SIMes)PK [SIMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolidine-2-ylidene] and (SIDipp)PK [SIDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolidine-2-ylidene] were used as precursors in salt elimination reactions with MCl3 (M = Al, Ga) in order to obtain new group 13 phosphinidenide compounds. The new compounds [(NHC)PMCl2]2 (NHC = SIMes, SIDipp; M = Al, Ga) exhibit dimerization in solid state as well as in solution and show different shapes of the central M2P2 cycle (butterfly or nearly square planar conformation) in solid state, depending on the size of the NHC ligand bound to the phosphorus atom.  相似文献   

10.
The oxidative addition products trans-[Pd(NHC)(2)(Ar)Cl] (NHC = cyclo-C[N(t)BuCH](2); Ar = Me-4-C(6)H(4), MeO-4-C(6)H(4), CO(2)Me-4-C(6)H(4)) have been isolated in good yields from the reactions of ArCl with the amination precatalyst [Pd(NHC)(2)] and structurally characterized. The former undergo reversible dissociation of one NHC ligand at elevated temperatures, and a value of 25.57 kcal mol(-1) has been determined for the Pd-NHC dissociation enthalpy in the case where Ar = Me-4-C(6)H(4). Detailed kinetic studies have established that the oxidative addition reactions proceed by a dissociative mechanism. Rate data for the oxidation addition of Me-4-C(6)H(4)Cl to [Pd(NHC)(2)] compared to that obtained for the [Pd(NHC)(2)]-catalyzed coupling of morpholine with 4-chlorotoluene are consistent with a rate-determining oxidative addition in the catalytic amination reaction. The relative rates of oxidative addition of the three aryl chlorides to [Pd(NHC)(2)] (CO(2)Me-4-C(6)H(4)Cl > Me-4-C(6)H(4)Cl > MeO-4-C(6)H(4)Cl) reflect the electronic nature of the substituents and also parallel observed trends in coupling efficiency for these aryl halides in aminations.  相似文献   

11.
The mechanistic details of nickel-catalyzed reduction of CO(2) with catecholborane (HBcat) have been studied by DFT calculations. The nickel pincer hydride complex ({2,6-C(6)H(3)(OP(t)Bu(2))(2)}NiH = [Ni]H) has been shown to catalyze the sequential reduction from CO(2) to HCOOBcat, then to CH(2)O, and finally to CH(3)OBcat. Each process is accomplished by a two-step sequence at the nickel center: the insertion of a C═O bond into [Ni]H, followed by the reaction of the insertion product with HBcat. Calculations have predicted the difficulties of observing the possible intermediates such as [Ni]OCH(2)OBcat, [Ni]OBcat, and [Ni]OCH(3), based on the low kinetic barriers and favorable thermodynamics for the decomposition of [Ni]OCH(2)OBcat, as well as the reactions of [Ni]OBcat and [Ni]OCH(3) with HBcat. Compared to the uncatalyzed reactions of HBcat with CO(2), HCOOBcat, and CH(2)O, the nickel hydride catalyst accelerates the H(δ-) transfer by lowering the barriers by 30.1, 12.4, and 19.6 kcal/mol, respectively. In general, the catalytic role of the nickel hydride is similar to that of N-heterocyclic carbene (NHC) catalyst in the hydrosilylation of CO(2). However, the H(δ-) transfer mechanisms used by the two catalysts are completely different. The H(δ-) transfer catalyzed by [Ni]H can be described as hydrogen being shuttled from HBcat to nickel center and then to the C═O bond, and the catalyst changes its integrity during catalysis. In contrast, the NHC catalyst simply exerts an electronic influence to activate either the silane or CO(2), and the integrity of the catalyst remains intact throughout the catalytic cycle. The comparison between [Ni]H and Cp(2)Zr(H)Cl in the stoichiometric reduction of CO(2) has suggested that ligand sterics and metal electronic properties play critical roles in controlling the outcome of the reaction. A bridging methylene diolate complex has been previously observed in the zirconium system, whereas the analogous [Ni]OCH(2)O[Ni] is not a viable intermediate, both kinetically and thermodynamically. Replacing HBcat with PhSiH(3) in the nickel-catalyzed reduction of CO(2) results in a high kinetic barrier for the reaction of [Ni]OOCH with PhSiH(3). Switching silanes to HBcat in NHC-catalyzed reduction of CO(2) generates a very stable NHC adduct of HCOOBcat, which makes the release of NHC less favorable.  相似文献   

12.
The [(NHC)AuI]-catalyzed (NHC=N-heterocyclic carbene) formation of alpha,beta-unsaturated carbonyl compounds (enones and enals) from propargylic acetates is described. The reactions occur at 60 degrees C in 8 h in the presence of an equimolar mixture of [(NHC)AuCl] and AgSbF6 and produce conjugated enones and enals in high yields. Optimization studies revealed that the reaction is sensitive to the solvent, the NHC, and, to a lesser extent, to the silver salt employed, leading to the use of [(ItBu)AuCl]/AgSbF6 in THF as an efficient catalytic system. This transformation proved to have a broad scope, enabling the stereoselective formation of (E)-enones and -enals with great structural diversity. The effect of substitution at the propargylic and acetylenic positions has been investigated, as well as the effect of aryl substitution on the formation of cinnamyl ketones. The presence or absence of water in the reaction mixture was found to be crucial. From the same phenylpropargyl acetates, anhydrous conditions led to the formation of indene compounds via a tandem [3,3] sigmatropic rearrangement/intramolecular hydroarylation process, whereas simply adding water to the reaction mixture produced enone derivatives cleanly. Several mechanistic hypotheses, including the hydrolysis of an allenol ester intermediate and SN2' addition of water, were examined to gain an insight into this transformation. Mechanistic investigations and computational studies support [(NHC)AuOH], produced in situ from [(NHC)AuSbF6] and H2O, instead of cationic [(NHC)AuSbF6] as the catalytically active species. Based on DFT calculations performed at the B3LYP level of theory, a full catalytic cycle featuring an unprecedented transfer of the OH moiety bound to the gold center to the C[triple chemical bond]C bond leading to the formation of a gold-allenolate is proposed.  相似文献   

13.
基于四价非血红素铁模型配合物[FeⅣ(O)(N4Py)]2+, 通过理论计算设计出一种新型N杂环卡宾配合物[FeⅣ(O)(N4Py)]2+. 采用密度泛函理论B3LYP方法, 计算了[FeⅣ(O)(N4Py)]2+的几何结构和电子结构, 并研究了[FeⅣ(O)(N4Py)]2+使环己烷C-H键羟基化的反应机理. 结果表明, [FeⅣ(O)(N4Py)]2+的五重态能量比基态三重态能量高约5.7 kJ/mol, 故五重态几乎不能参与反应. 赤道方向的配位基N杂环卡宾(NHC)对FeO单元的σ-贡献要大于N4Py的贡献, 而它的空间位阻效应也大于N4Py, 因此2+的稳定性强于[FeⅣ(O)(N4Py)]2+. [FeⅣ(O)(N4Py)]2+的三重态的反应能垒比[FeⅣ(O)(N4Py)]2+的三重态反应能垒高2.0 kJ/mol, 且为单态反应, 所以[FeⅣ(O)(N4Py)]2+的反应活性要高于[FeⅣ(O)(N4Py)]2+.  相似文献   

14.
Allenes (carbodicarbenes) and [3]cumulenes are linear carbon chains that can be bent when the terminal group has a strong carbene nature. This bending can be quite pronounced in allenes but not in [3]cumulenes. In this study, how N-heterocyclic or cyclic (alkyl)(amino) carbene (NHC and CAAC, respectively) terminal groups can modify the linear structure of [n]cumulenes has been analyzed. A low π acidity of the terminal carbene affects the linearity of [2n]cumulenes. Indeed, it has been found that the NHC [4]cumulene is extremely bent, contrary to classical [4]cumulenes. The predicted NHC [4]cumulene or tricarbodicarbene has two lone pairs and the π electrons are delocalized over the whole molecule. More significantly, DFT calculations have shown that this bent [4]cumulene is very stable, considerably more so than the corresponding [3]cumulene, which has been elusive to synthesize. Remarkably, calculations have shown that all the NHC [2n]cumulenes are more than 25 kcal mol−1 more stable than the [2n−1]cumulenes.  相似文献   

15.
The novel phosphinidene complex [Cp*(NHC)Ir=PMes*] (3; NHC=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) was prepared in high yield from [Cp*(NHC)IrCl(2)] (2) and [LiPHMes*].3 THF. It represents the first example of an NHC ligated transition metal phosphinidene complex. The X-ray crystal structure for 3 is also reported. DFT calculations on the N-heterocyclic carbene containing parent complexes [Cp(NHC)Ir=E] (E=PH, NH, CH(2)) show that the NHC ligand acts as good sigma-donor/weak pi-acceptor ligand and forms strong Ir-C(NHC) single bonds. The Ir=E double bonds result from strong triplet-triplet interactions between [Cp(NHC)Ir] and E.  相似文献   

16.
N-heterocyclic carbenes (NHCs) have garnered much attention due to their unique properties, such as strong σ-donating and π-accepting abilities, as well as their transition-metal-like reactivity toward small molecules. In 2015, we discovered that NHCs can react with nitric oxide (NO) gas to form radical adducts that resemble transition metal nitrosyl complexes. To elucidate the analogy between NHC and transition metal NO adducts, here we have undertaken a systematic investigation of the electron- and proton-transfer chemistry of [NHC−NO]⋅ (N-heterocyclic carbene nitric oxide radical) compounds. We have accessed a suite of compounds, comprised of [NHC−NO]+, [NHC−NO], [NHC−NOH]0, and [NHC−NHOH]+ species. In particular, [NHC−NO] was isolated as potassium and lithium ion adducts. Most interestingly, a monomeric potassium [NHC−NO] compound was isolated with the assistance of 18-crown-6, which is the first instance of a monomeric alkali N-oxyl compound to the best of our knowledge. Our results demonstrate that [NHC−NO]⋅ exhibits redox behavior broadly similar to metal nitrosyl complexes, which opens up more possibilities for utilizing NHCs to build on the known reactivity of metal complexes.  相似文献   

17.
Lee HM  Zeng JY  Hu CH  Lee MT 《Inorganic chemistry》2004,43(21):6822-6829
A new imidazolium salt, 1,3-bis(2-diphenylphosphanylethyl)-3H-imidazol-1-ium chloride (2), for the phosphine/N-heterocyclic carbene-based pincer ligand, PC(NHC)P, and its palladium complexes were reported. The complex, [Pd(PC(NHC)P)Cl]Cl (4), was prepared by the common route of silver carbene transfer reaction and a novel direct reaction between the ligand precursor, PC(NHC)P.HCl and PdCl(2) without the need of a base. Metathesis reactions of 4 with AgBF(4) in acetonitrile produced [Pd(PC(NHC)P)(CH(3)CN)](BF(4))(2) (5). The same reaction in the presence of excess pyridine gave [Pd(PC(NHC)P)(py)](BF(4))(2) (6). The X-ray structure determination on 4-6 revealed the chiral twisting of the central imidazole rings from the metal coordination plane. In solution, fast interconversion between left- and right-twisted forms occurs. The twisting reflects the weak pi-accepting property of the central NHC in PC(NHC)P. The uneven extent of twisting among the three complexes further implies the low rotational barrier about the Pd-NHC bond. Related theoretical computations confirm the small rotational energy barrier about the Pd-NHC bond (ca. 4 kcal/mol). Catalytic applications of 4 and 5 have shown that the complexes are modest catalysts in Suzuki coupling. The complexes were active catalysts in Heck coupling reactions with the dicationic complex 5 being more effective than the monocationic complex 4.  相似文献   

18.
The silver(I) coordination networks [Ag2(mu-O2CCF3)2(mu-NN)2](infinity) exist as a polymer of macrocycles or a double-stranded polymer when NN = 1,2-C6H4[NHC(O)-4-C5H4N]2 or 1,2-C6H4[NHC(O)-3-C5H4N]2, respectively. Crystal engineering of the polymers is achieved through interchain hydrogen bonds.  相似文献   

19.
N,N'-Disubstituted imidazolium carboxylates, readily synthetically available, isolable, air- and water-stable reagents, efficiently transfer N-heterocyclic carbene (NHC) groups to Rh, Ir, Ru, Pt, and Pd, to give novel NHC complexes, e.g., [Pd(NHC)3OAc]OAc and [Pt(NHC)3Cl]Cl (NHC = 1,3-dimethyl imidazol-2-ylidene). The NHC esters are also effective. Tuning the reaction conditions for NHC transfer can give either mono- or bis-NHCs, or bis- and tris-NHCs. A net N to C rearrangement of the N-alkyl imidazole complex to the corresponding NHC complex was seen with (MeO)2CO (DMC). DFT calculations identify the steps needed to form the carboxylate from imidazole and DMC: SN2 methyl transfer from DMC to imidazole, followed by proton transfer from the imidazolium CH to the carboxylate counterion, produces the free NHC H-bonded to MeOH with a weakly associated CO2. The nucleophilic NHC attacks CO2 to form NHC-CO2. NHC transfer to the metal with loss of CO2 has been calculated for Rh(cod)Cl. A proposed two-cis-site reactivity model rationalizes the experimental data: two such vacant sites at the metal are needed to allow coordination of the NHC-CO2 carboxylate and subsequent CC cleavage with NHC transfer. Partial cod decoordination or chloride loss is thus required for Rh(cod)Cl. Chloride dissociation, calculated to be easier in polar solvent, is confirmed experimentally from the retarding effect of excess chloride.  相似文献   

20.
Gold(I) complexes bearing N-heterocyclic carbenes (NHC) of the type (NHC)AuBr (3a/3b) [NHC = 1-methyl-3-benzylimidazol-2-ylidene (= MeBnIm), and 1,3-dibenzylimidazol-2-ylidene (= Bn(2)Im)] are prepared by transmetallation reactions of (tht)AuBr (tht = tetrahydrothiophene) and (NHC)AgBr (2a/2b). The homoleptic, ionic complexes [(NHC)(2)Au]Br (6a/6b) are synthesized by the reaction with free carbene. Successive oxidation of 3a/3b and 6a/6b with bromine gave the respective (NHC)AuBr(3) (4a/4b) and [(NHC)(2)AuBr(2)]Br (7a/7b) in good overall yields as yellow powders. All complexes were characterized by NMR spectroscopy, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Reactions of the Au(III) complexes towards anionic ligands like carboxylates, phenolates and thiophenolates were investigated and result in a complete or partial reduction to a Au(I) complex. Irradiation of the Au(III) complexes with UV light yield the Au(I) congeners in a clean photo-reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号