首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helical rosette nanotubes are obtained through the self-assembly of low molecular weight synthetic modules in water. Here we demonstrate that despite their dynamic nature, these materials respond very well to directional fluid flow and assume long-range order on flat substrates. Persistence length, order, and packing of the rosette nanotubes were found to depend dramatically on the surface properties of both the substrate and the nanotubes and vary from well-ordered long-range 2D films to bundled nanotubes or amorphous conglomerates. While flow-induced long-range alignment of dynamic nanostructures is unprecedented, the chemical tunability of the rosette nanotubes is anticipated to offer a versatile means for investigating the basis of interfacial forces in self-assembled organo-silicon devices and their effect on the stability and physical properties of organic nanostructures on electroactive surfaces.  相似文献   

2.
Charge-transfer emitters are attractive due to their color tunability and potentially high photoluminescence quantum yields (PLQYs). We herein present tetraaminospirenes as donor moieties, which, in combination with a variety of acceptors, furnished 12 charge-transfer emitters with a range of emission colors and PLQYs of up to 99 %. The spatial separation of their frontier molecular orbitals was obtained through careful structural design, and two DA structures were confirmed by X-ray crystallography. A range of photophysical measurements supported by DFT calculations shed light on the optoelectronic properties of this new family of spiro-NN-donor-acceptor dyes.  相似文献   

3.
This work reported the discovery of N-triflimide (NTf)-based zwitter-ionic liquids (ZILs) that exhibit UCST-type phase transitions in water, and their further structural optimization in fine-tuning polarity to ultimately afford newfangled thermosensitive materials carrying attractive and biocompatible Tc values that clearly demonstrated the true value of the tunability of ZIL structure. This research established that with non-aromatic, acyclic ZILs as small-molecule thermoresponsive materials, their mixing and de-mixing with water triggered by temperatures are entirely reversible.  相似文献   

4.
Biofouling of glass and quartz surfaces can be reduced when the surface is coated with photocatalytically active metal oxides, such as TiO2 (anatase form) or SnO2. We measured the attachment of eight strains of bacteria to these two metal oxides (TiO2 and SnO2), and to an uncoated glass (control; designated Si-m) before and after exposure to UV light at wavelengths of 254 nm (UVC) or 340 nm UV (UVA). TiO2-coated surfaces were photocatalytically active at both 254 and 340 nm as evidenced by a decrease in the water contact angle of the surface from 59 degrees +/-2 to <5 degrees. The water contact angle of the SnO2 surface was reduced only at 254 nm, while contact angle of the Si-m glass surface was not altered by light of either wavelength. Bacterial adhesion decreased by 10-50% to photocatalyzed glass surfaces. In all cases, bacteria exposed to the UV light were completely killed due to a combination of exposure to UV light and the photocatalytic activity of the glass surfaces. These results show that UV light irradiation of TiO2-coated surfaces can be an effective method of reducing bacterial adhesion.  相似文献   

5.
The dissociative adsorption and decomposition on a range of metal surfaces of an alkane, an alkene, and an aromatic, all representative of species present in an important technological application, has been studied under conditions relevant to selective gas sensing based on solid electrolyte potentiometry. At 870 K, pure polycrystalline Pt surfaces do not discriminate between n-hexane, toluene, and 1-butene: graphitic carbon accumulation occurs at almost the same rate. However, by varying the composition of polycrystalline bimetallic Pt/Au surfaces, good discrimination between these species can be achieved. Thus at a nominal surface composition of approximately 75% Au (XPS), good selectivity toward 1-butene and toluene uptake is achieved, with essentially no response to n-hexane. At approximately 80% Au the system is selective to 1-butene alone. Particular merits of these systems include good high-temperature stability and good tunability of their chemical selectivity. This makes possible the development of array devices in which the elements have overlapping but different selectivity profiles.  相似文献   

6.
Emulsions of equal volumes of a cyclic silicone oil and water stabilized by fumed silica nanoparticles alone can be inverted from oil-in-water (o/w) to water-in-oil (w/o) by simply increasing the concentration of particles. The phenomenon is found to be crucially dependent both on the inherent hydrophobicity of the particles and on their initial location. Inversion only occurs in systems with particles of intermediate hydrophobicity when dispersed in oil; emulsions prepared from the same particles but initially dispersed in water remain o/w at all particle concentrations. The stability and drop size distributions in the different emulsions are compared. Various hypotheses are put forward and argued to explain this novel inversion route including adsorption of oil onto particle surfaces, hysteresis of contact angle affecting particle wettability in situ, and the structure of particle dispersions in oil or water prior to emulsification inferred from rheology and light scattering measurements. We propose that the tendency for particles to behave more hydrophobically at higher concentrations in oil is due to the reduction in the effective silanol content at their surfaces as a result of gel formation via silanol-silanol hydrogen bonds. In water, solvation of particle surfaces prevents this from occurring and particles behave as hydrophilic ones at all concentrations. A concentration-induced change in particle wettability is thus advanced.  相似文献   

7.
The wetting characteristics of surfaces of polymers doped with photochromic spiropyran molecules can be tuned when irradiated with laser beams of properly chosen photon energy. The hydrophilicity is enhanced upon UV laser irradiation since the embedded nonpolar spiropyran molecules convert to their polar merocyanine isomers. The process is reversed upon green laser irradiation. Structuring of the photochromic polymeric surfaces with soft lithography enhances significantly the hydrophobicity of the system, indicating that the water droplets on the patterned features interact with air that is trapped in the microcavities, thus creating superhydrophobic air-water contact areas. Furthermore, the light-induced wettability variations of the structured surfaces are enhanced by a factor of 3 compared to those on the flat surfaces. This significant enhancement is attributed to the photoinduced reversible volume changes to the imprinted gratings, which additionally contribute to the wettability changes due to the light-induced photochromic interconversions.  相似文献   

8.
Metal–organic frameworks (MOFs) with long-term stability and reversible high water uptake properties can be ideal candidates for water harvesting and indoor humidity control. Now, a mesoporous and highly stable MOF, BIT-66 is presented that has indoor humidity control capability and a photocatalytic bacteriostatic effect. BIT-66 (V3(O)3(H2O)(BTB)2), possesses prominent moisture tunability in the range of 45–60 % RH and a water uptake and working capacity of 71 and 55 wt %, respectively, showing good recyclability and excellent performance in water adsorption–desorption cycles. Importantly, this MOF demonstrates a unique photocatalytic bacteriostatic behavior under visible light, which can effectively ameliorate the bacteria and/or mold breeding problem in water adsorbing materials.  相似文献   

9.
Metal–organic frameworks (MOFs) with long‐term stability and reversible high water uptake properties can be ideal candidates for water harvesting and indoor humidity control. Now, a mesoporous and highly stable MOF, BIT‐66 is presented that has indoor humidity control capability and a photocatalytic bacteriostatic effect. BIT‐66 (V3(O)3(H2O)(BTB)2), possesses prominent moisture tunability in the range of 45–60 % RH and a water uptake and working capacity of 71 and 55 wt %, respectively, showing good recyclability and excellent performance in water adsorption–desorption cycles. Importantly, this MOF demonstrates a unique photocatalytic bacteriostatic behavior under visible light, which can effectively ameliorate the bacteria and/or mold breeding problem in water adsorbing materials.  相似文献   

10.
We present a new technology to organize microparticles and nanoparticles along micropatterns of variable complexity over centimeter-squared surfaces. This technology relies on the fabrication of textured hydrogels, which serve as templates for directed assembly after the deposition of a droplet of colloids on their surfaces. We show that directed assembly occurs spontaneously during water evaporation, and we demonstrate the efficiency of this mechanism for a variety of organic and inorganic nano-objects. The dynamics of this process is also uncovered by light microscopy, showing that the patterns imprinted on the gel determine fluid flow during water evaporation and allow for directed movements toward predictable positions. We finally propose different methods to transfer assembled particles from hydrogels to glass, silicon, or metallic surfaces, and we show that the assembled and transferred particles retain their surface properties for bioassays. Beyond the originality of this spontaneous assembly mechanism, it constitutes an attractive technology for nano-object large-scale integration, which does not require costly environmental control equipment.  相似文献   

11.
Most of the success of electronic devices fabricated to actively interact with a biological environment relies on the proper choice of materials and efficient engineering of surfaces and interfaces. Organic materials have proved to be among the best candidates for this aim owing to many properties, such as the synthesis tunability, processing, softness and self-assembling ability, which allow them to form surfaces that are compatible with biological tissues. This review reports some research results obtained in the development of devices which exploit organic materials' properties in order to detect biologically significant molecules as well as to trigger/capture signals from the biological environment. Among the many investigated sensing devices, organic field-effect transistors (OFETs), organic electrochemical transistors (OECTs) and microcantilevers (MCLs) have been chosen. The main factors motivating this choice are their label-free detection approach, which is particularly important when addressing complex biological processes, as well as the possibility to integrate them in an electronic circuit. Particular attention is paid to the design and realization of biocompatible surfaces which can be employed in the recognition of pertinent molecules as well as to the research of new materials, both natural and inspired by nature, as a first approach to environmentally friendly electronics.  相似文献   

12.
A commercially available fluorimeter with a white light source is used to detect surface enhanced resonance Raman scattering (SERRS). This approach allows facile tunability of the excitation source for SERRS.  相似文献   

13.
Lead‐halide perovskites are well known to decompose rapidly when exposed to polar solvents, such as water. Contrary to this common‐place observation, we have found that through introducing a suitable minor amount of water into the reaction mixture, we can synthesize stable CsPbBr3 nanocrystals. The size and the crystallinity, and as a result the band gap tunability of the strongly emitting CsPbBr3 nanocrystals correlate with the water content. Suitable amounts of water change the crystallization environment, inducing the formation of differently shaped perovskites, namely spherical NCs, rectangular nanoplatelets, or nanowires. Bright CsPbBr3 nanocrystals with the photoluminescence quantum yield reaching 90 % were employed for fabrication of inverted hybrid inorganic/organic light‐emitting devices, with the peak luminance of 4428 cd m?2 and external quantum yield of 1.7 %.  相似文献   

14.
Superhydrophobicity and superhydrophilicity of surfaces are key properties for fabrication of self-cleaning surfaces (Lotus effect). It is well known that the mechanism behind this is based on the surface roughness and surface functionalization. To obtain an understanding of the details of the underlying mechanism, a metal system based on a eutectic is suggested. In this study, a wide range tunability of its needlelike narrow size distributed nanostructure is demonstrated. The length of the needles as well as their density can be varied independently. In addition, an important parameter for the wettability, the roughness, is related directly to the growth parameters, which lead to excellent controllable and reproducible eutectic structures. Simply by varying etching time very high aspect ratios can be achieved, allowing studying the interaction of the very long needles with liquids. Moreover, the surface functionality can be tuned by RF-magnetron sputtering of PTFE onto the metal needles. As those layers can be very thin, our system allows, in principle, studying the transition from a metal to a polymer surface using submonolayers. Furthermore, the first contact angle measurements on the nanostructured and functionalized eutectic structures are presented and discussed.  相似文献   

15.
16.
Interfacial water structure at charged surfaces plays a key role in many physical, chemical, biological, environmental, and industrial processes. Understanding the release of interfacial water from the charged solid surfaces during dehydration process may provide insights into the mechanism of protein folding and the nature of weak molecular interactions. In this work, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by quartz crystal microbalance (QCM) measurements, has been applied to study the interfacial water structure at polyelectrolyte covered surfaces. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) chains are grafted on solid surfaces to investigate the change of interfacial water structure with varying surface charge density induced by tuning the solution pH. At pH ≤ 7.1, SFG-VS intensity is linear to the loss of mass of interfacial water caused by the dehydration of PDMAEMA chains, and no reorientation of the strongly bonded water molecules is observed in the light of χ(ppp)/χ(ssp) ratio. χ((3)) contribution to SFG signal is deduced based on the combination of SFG and QCM results. It is the first direct experimental evidence to reveal that the χ((3)) has a negligible contribution to SFG signal of the interfacial water at a charged polymer surface.  相似文献   

17.
We demonstrate that superhydrophobic and superoleophobic nanocellulose aerogels, consisting of fibrillar networks and aggregates with structures at different length scales, support considerable load on a water surface and also on oils as inspired by floatation of insects on water due to their superhydrophobic legs. The aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Furthermore, we demonstrate high-adhesive pinning of water and oil droplets, gas permeability, light reflection at the plastron in water and oil, and viscous drag reduction of the fluorinated aerogel in contact with oil. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.  相似文献   

18.
采用热陈化微乳液及浸渍-提拉技术,制备了具有自清洁功能的TiO2薄膜。 考察了微乳液中表面活性剂十二烷基苯磺酸(DBS)的用量对TiO2薄膜的表面形态和微观结构的影响。 进而对合成的TiO2薄膜的光催化活性、光致亲水性能及实际环境中的自清洁效果进行了测试评价。 随着表面活性剂DBS用量的增加,微乳液中的分散质点尺寸减小,但热陈化后所获得的TiO2粒子表现出凝集现象。 在DBS用量为0及58 mg/L时,所获得薄膜表面较为平整,由15~20 nm大小的TiO2粒子组成。 这些薄膜在无紫外光照射时,水接触角增大的速度较慢,并且在紫外光照射下能迅速恢复其超亲水性能。 将薄膜置于室外25 d后其表面无灰尘粘结,水接触角由原来的0°增大至14°~18°。 当DBS用量为580 mg/L以上时,薄膜表面起伏不平,粗糙度过大,对应TiO2薄膜光致亲水性能较差,室外放置25 d后,水接触角由原来的0°增大至46°~48°。  相似文献   

19.
原子转移自由基聚合原位合成温敏性微球   总被引:1,自引:0,他引:1  
以过硫酸钾为引发剂、丙酮-水[V(丙酮)∶V(水)=4∶6]的混合溶剂为反应介质, 在少量二乙烯苯存在的条件下使苯乙烯(St)和对氯甲基苯乙烯(CMSt)进行无皂乳液共聚反应, 得到了粒径大小均匀的交联型聚苯乙烯(PSt)微球, 由X射线光电子能谱对表面组分测定发现: CMSt上的氯原子在聚合过程中富集于交联微球的表面. 以此交联型PSt微球为原子转移自由基聚合(ATRP)的引发剂, 在22 ℃下引发N-异丙基丙烯酰胺(NIPAAm)进行原位ATRP反应, 得到了表面原子转移自由基聚合接枝的交联聚苯乙烯(PNIPAAm-g-PSt)温敏性微球. 借助傅立叶变换红外光谱、差示扫描量热仪、扫描电子显微镜及激光光散射仪等对PNIPAAm-g-PSt的结构、相转变温度、形态及不同温度下的粒径变化进行了测定, 结果表明NIPAAm单体成功地原位ATRP接枝在交联PSt微球的表面, 接枝微球的球形更规整, 在水中的相转变温度约为32 ℃, 具有明显的温度敏感性.  相似文献   

20.
The photophysical behaviors of fluorescent molecules largely determine their major utility in biological studies. Despite their well-defined characteristics, classical fluorophores have often been challenged by their limited synthetic methodology and tunability in adjusting intrinsic optical properties. A novel heterocyclic core equipped with modular functional groups could offer the flexibility to control its photophysical properties with a minimum synthetic effort. By conducting a systematic analysis guided by quantum calculations, we proposed the furoindolizine-based molecular framework as a unique fluorescent platform capable of providing versatile photophysical properties with minimal structural modification. A broad tunability of furoindolizine derivatives′ photophysical properties such as emission wavelength, Stokes shift, fluorescent brightness, and charge transfer characteristics was achieved through synergistic interaction between two functional moieties. Furthermore, this modular platform led to live-cell imaging probes with two distinct optical features simply by reorganizing a pair of functional moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号