首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis is presented to investigate the influence of viscous dissipation on a free convection flow over a vertical cone with a variable surface heat flux under the action of a transverse magnetic field. The heat transfer characteristics of the free convection flow are investigated numerically. Numerical solutions for transformed governing equations with a variable surface heat flux are obtained. Velocity, temperature, local shear stress, and heat transfer coefficients are calculated for various values of the problem parameters and presented in the graphical form. The effects of the magnetic parameter, the dissipation number, the power-law index, the angle between the cone generatrix and the vertical line, and the Prandtl number on the flow are discussed. For validation of the present numerical results, they are compared with available experimental data and are found to agree well.  相似文献   

2.
An analysis is performed to study the MHD free convection flow in a vertical rectangular duct for laminar and fully developed regime taking into consideration the effects of Ohmic heating and viscous dissipation. Numerical solutions are found using finite difference method of second-order accuracy. The effects of various physical parameters such as Hartmann number, aspect ratio, buoyancy parameter and circuit parameter are presented graphically. It is found that as Hartmann number, buoyancy parameter and aspect ratio increase, the upward and downward flow rates are increased for open circuit but decrease for short circuit.  相似文献   

3.
Abstract Aim of the paper is to investigate the effects of linearly varying thermal conductivity, viscous dissipation and Ohmic heating on steady free convection flow of a viscous incompressible electrically conducting liquid having low Prandtl number along an inclined isothermal non-conducting porous plate in the presence of transverse magnetic field. The governing equations of continuity, momentum and energy are transformed into ordinary differential equations using similarity transformation. The resulting coupled and non-linear ordinary differential equations are solved using Runge-Kutta fourth order method and shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and Nusselt number at the plate are derived, discussed and their numerical values for various values of physical parameters are presented through tables.  相似文献   

4.
Mixed convection flow and heat transfer about an isothermal vertical wall embedded in a fluid saturated porous medium with uniform free stream velocity is considered and the effects of thermal dispersion and viscous dissipation in both aiding and opposing flows are analysed. Similarity solution is not possible due to the inclusion of the viscous dissipation term, series solution is obtained, first and second order effects of dissipation revealed that viscous dissipation lowers the heat transfer rate. Observations also revealed that the thermal dispersion effect enhances the heat transfer rate and the effect of viscous dissipation is observed to increase with increasing values of the dispersion parameter. Received on 21 March 1997  相似文献   

5.
Viscous dissipation effects in the problem of a fully-developed combined free and forced convection flow between two symmetrically and asymmetrically heated vertical parallel walls filled with a porous medium is analyzed. The equation of motion contains the modified Rayleigh number for a porous medium and the small-order viscous dissipation parameter. Particular attention is given to the solutions near the critical Rayleigh numbers at which infinite flow rates are predicted. Information concerning the multiplicity of solutions at critical Rayleigh numbers is also deduced from perturbation solutions of the governing equation.  相似文献   

6.
The effects of viscous dissipation are considered for natural convection flow past a semi-infinite inclined plate with variable surface temperature. Velocity and temperature profiles, skin friction, and rate of heat transfer are obtained. The effects of Grashof and Prandtl numbers, inclination angle, exponent in the wall temperature variation law, and viscous dissipation parameter on the flow are discussed. It is shown that the time required to reach steady states increases with increasing Prandtl number of the fluid. In addition, an increase in the plate temperature due to viscous dissipation was found to lead to a rise in the average skin friction and a decrease in the average Nusselt number.  相似文献   

7.
An analytical study of fluid flow and heat transfer in a composite channel is presented. The channel walls are maintained at different constant temperatures in such a way that the temperatures do not allow for free convection. The upper plate is considered to be moving and the lower plate is fixed. The flow is modeled using Darcy–Lapwood–Brinkman equation. The viscous and Darcy dissipation terms are included in the energy equation. By applying suitable matching and boundary conditions, an exact solution has been obtained for the velocity and temperature distributions in the two regions of the composite channel. The effects of various parameters such as the porous medium parameter, viscosity ratio, height ratio, conductivity ratio, Eckert number, and Prandtl number on the velocity and temperature fields are presented graphically and discussed.  相似文献   

8.
Magyari  E.  Keller  B. 《Transport in Porous Media》2003,51(2):227-230
External free convection boundary-layer flows are usually treated by neglecting the effect of viscous dissipation. This assumption always results in a non-parallel flow, besides a strong parallel component also a weak transversal component of the (steady) velocity field occurs. The present paper shows, however, that the weak opposing effect of the buoyancy forces due to heat release by viscous dissipation, can give rise along a cold vertical plate adjacent to a fluid saturated porous medium to a strictly parallel steady free convection flow. This boundary-layer flow is described by an algebraically decaying exact analytical solution of the basic balance equations.  相似文献   

9.
The transient problem of coupled heat and mass transfer of a micropolar fluid in magneto‐hydrodynamic free convection from a vertical infinite porous plate with an exponentially decaying heat generating considering the viscous dissipation and ohmic heating effects is studied. Joule heating must be considered when the viscous dissipation and the Prandtl number are large. The non‐dimensional equations for the conservation of mass, momentum, energy and concentration are solved by means a numerical technique based on electric analogy (network simulation method). This method provides the numerical response of the system by running the network in circuit resolution software with the solution to both transient and steady‐state problems at the same time, and its programming does not require manipulation of the sophisticated mathematical software that is inherent in other numerical methods. The effects of the material parameters, viscous dissipation, internal generation and Joule heating on velocity, angular momentum and temperature fields across the boundary layer are investigated. In addition, the skin‐friction coefficient, couple stress coefficient, Nusselt number and Sherwood number are shown in tabular form. The numerical results for velocity and temperature distributions of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, thermally developing laminar forced convection in a pipe including viscous dissipation and wall conductance is investigated numerically. The constant heat flux is assumed to be imposed at the outer surface of the pipe wall. The finite volume method is used. The distributions for the developing temperature and local Nusselt number in the entrance region are obtained. The dependence of the results on the Brinkman number and the dimensionless thermal conductivity are shown. The viscous heating effect on the wall is shown. Significant viscous dissipation effects have been observed for large Br.  相似文献   

11.
Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered.  相似文献   

12.
The effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluid saturated porous medium are examined numerically. The Darcy–Brinkman–Forchheimer model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy–Brinkman–Forchheimer model of porous media. The simultaneous development of the momentum and thermal boundary layers are obtained by using a finite difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as local friction factor and local Nusselt number are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach steady state.  相似文献   

13.
In this paper we investigate the combined free and forced convection of a fully developed Newtonian fluid within a vertical channel composed of porous media when viscous dissipation effects are taken into consideration. The flow is analysed in the region of a first critical Rayleigh number in order to interpret the multiple-valued solutions and discuss their validity. The governing fourth-order, ordinary differential equation, which contains the Darcy and the viscous dissipation terms, is solved analytically using perturbation techniques and numerically using D02HBF NAG Library. A detailed investigation of the governing O.D.E. is performed on both clear fluid and porous medium for various values of the viscous dissipation parameter, , when the wall temperature decreases linearly with height, and the pressure gradient is both above and below its hydrostatic value. Although mathematically the results in all cases show that there are two solution branches, producing four possible solutions, the study of the velocity and buoyancy profiles together with the Darcy effect indicate that only one of the two solutions at any value of the Rayleigh number appears to be physically acceptable. It is shown that the effect of the Darcy number decreases as the critical Rayleigh numbers increase.  相似文献   

14.
A numerical investigation of transient magnetohydrodynamic free convection flow past an infinite vertical plate embedded in a porous medium with viscous dissipation is presented in the above paper. The governing differential equations are transformed into a set of non-linear coupled partial differential equations and are solved numerically using the finite element method. Numerical results for the velocity, temperature and concentration profiles within the boundary layer are presented and discussed.  相似文献   

15.
The effects of viscous dissipation and heat source/sink on fully developed mixed convection for the laminar flow in a parallel-plate vertical channel are investigated.The plate exchanges heat with an external fluid.Both conditions of equal and different reference temperatures of the external fluid are considered.First,the simple cases of the negligible Brinkman number or the negligible Grashof number are solved analytically.Then,the combined effects of buoyancy forces and viscous dissipation in the presence of heat source/sink are analyzed by a perturbation series method valid for small values of the perturbation parameter.To relax the conditions on the perturbation parameter,the velocity and temperature fields are solved by using the Runge-Kutta fourth-order method with the shooting technique.The velocity,temperature,skin friction,and Nusselt numbers at the plates are discussed numerically and presented through graphs.  相似文献   

16.
A boundary layer analysis has been presented to study the combined effects of viscous dissipation, Joule heating, transpiration, heat source, thermal diffusion and Hall current on the hydromagnetic free convection and mass transfer flow of an electrically conducting, viscous, homogeneous, incompressible fluid past an infinite vertical porous plate. The governing partial differential equations of the hydromagnetic free convective boundary layer flow are reduced to non-linear ordinary differential equations and solutions for primary velocity, secondary velocity, temperature and concentration field are obtained for large suction. The expressions for the skin-friction, the heat transfer and the mass transfer are also derived. The results of the study are discussed through graphs and tables for different numerical values of the parameters entered into the equations governing the flow.  相似文献   

17.
The unsteady mixed convection flow of electrical conducting nanofluid and heat transfer due to a permeable linear stretching sheet with the combined effects of an electric field, magnetic field, thermal radiation, viscous dissipation, and chemical reaction have been investigated. A similarity transformation is used to transform the constitutive equations into a system of nonlinear ordinary differential equations.The resultant system of equations is then solved numerically using implicit finite difference method.The velocity, temperature, concentration, entropy generation, and Bejan number are obtained with the dependence of different emerging parameters examined. It is noticed that the velocity is more sensible with high values of electric field and diminished with a magnetic field. The radiative heat transfer and viscous dissipation enhance the heat conduction in the system. Moreover, the impact of mixed convection parameter and Buoyancy ratio parameter on Bejan number profile has reverse effects. A chemical reaction reduced the nanoparticle concentration for higher values.  相似文献   

18.
A mixed convection flow of a third-grade fluid near the orthogonal stagnation point on a vertical surface with slip and viscous dissipation effects is investigated. The governing partial differential equations for the third-grade fluid are converted into a system of nonlinear ordinary differential equations by using a similarity transformation. The effects of various parameters, including the Weissenberg number, third-grade parameter, local Reynolds number, Prandtl number, Eckert number, mixed convection parameter, velocity slip, and thermal slip on the velocity and temperature profiles, local skin friction coefficient, and local Nusselt number are discussed.  相似文献   

19.
 The laminar and parallel flow of a Newtonian fluid in a vertical cylindrical duct with circular cross section has been analysed. Both the viscous dissipation effect and the buoyancy effect have been taken into account. The momentum balance equation and the energy balance equation have been solved by means of a perturbation method, in the case of a uniform heat flux prescribed at the wall of the duct. The velocity distribution, the temperature distribution, the Nusselt number and the Fanning friction factor have been evaluated analytically. Moreover, the velocity and temperature of the fluid have been compared with those obtained in two special cases: forced convection with viscous dissipation (i.e. negligible buoyancy effect); mixed convection with negligible effects of viscous dissipation. Received on 26 June 2000  相似文献   

20.
Combined forced and free convection flow in a fluid saturated inclined plane channel is investigated by taking into account the effect of viscous dissipation. Steady parallel flow is considered assuming that the temperature gradient in the parallel flow direction is constant, and the channel walls are subject to uniform symmetric heat fluxes. Two possible formulations of the Darcy–Boussinesq scheme are considered, based on two different choices of the reference temperature for modelling buoyancy. The first choice is a constant temperature, while the second is a streamwise changing temperature. It is shown that both approaches substantially agree in the formulation of the balance equations for the range of values of the Darcy–Rayleigh number such that viscous dissipation is important. The boundary value problem is solved analytically for any tilt angle, revealing that it admits dual solutions for assigned values of the governing parameters. The rather important effect of viscous dissipation in the special case of adiabatic channel walls is outlined. E. Magyari is on leave from Institute of Building Technology, ETH—Zürich  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号