首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Wei-Jing Zhu 《中国物理 B》2022,31(4):40503-040503
We studied the rectified transport of underdamped particles subject to phase lag in an asymmetric periodic structure. When the inertia effect is considered, it is possible to observe reversals of the average velocity with small self-propelled force, whereas particles always move in the positive direction with large self-propelled force. The introduction of phase lag leads particles to follow circular orbits and suppress the polar motion. In addition, this can adjust the direction of particle motion. There exists an optimal value of polar interaction strength at which the rectification is maximal. These results open the way for many application processes, such as spatial sorting of particles mixture and separation based on their physical properties.  相似文献   

2.
王会  贾富国  韩燕龙  张亚雄  曹斌 《物理学报》2017,66(1):14501-014501
料仓卸料过程中的颗粒脉动会引起料仓振动甚至导致结构失效.为了明晰颗粒脉动特征,本文进行了椭球颗粒在不同半锥角深仓的模拟卸料实验,将料仓圆筒部划分为4个固定区域以研究区域内颗粒的运动信息,分析了料仓圆筒部颗粒系统的运动特征.研究结果表明:整个卸料过程颗粒速度始终处于波动变化中,卸料前期表现为大振幅、周期性的剧烈脉动,卸料后期平均速度的变化则是小振幅无规律的波动;剧烈脉动时段各区域的颗粒层平均受力的变化规律与颗粒速度脉动特征相似,越接近储料顶端颗粒脉动振幅越大,表现出更规律的周期性脉动,相邻颗粒层间的脉动波形相似且周期相同,剧烈脉动过程中顶面颗粒呈周期性的自由落体运动,该时段内顶层颗粒每一次的自由落体运动都会引起该范围内颗粒间接触力消失;料仓半锥角越小时剧烈脉动频率越高、振幅越大且脉动持续时间也越长,卸料速度越稳定,且颗粒速度不会出现带有上升趋势的波动.研究结果可为卸料设备的安全设计提供参考.  相似文献   

3.
鄢仁樵  陈丽萍  周斌 《计算物理》2016,33(6):698-706
为探究室内可吸入颗粒物的运动特性,使用格子Boltzmann方法,在颗粒物运动概率模型的基础上考虑布朗力对颗粒物的作用,利用改良的LB-CA(Lattice Boltzmann-cellular automata)模型,模拟了Re数分别为400、1 000和2 000时粒径为0.01 μm、0.1 μm和1 μm的颗粒物在上送上回和上送侧回两种回风形式中的运动特性.结果显示:颗粒物的空间分布范围随着Re数的增大而增大,小粒径的颗粒物受到气流湍动和扩散作用的影响更明显;颗粒物的均方位移(mean square displacement,MSD)与Re数、颗粒物粒径的大小成反比,而同样的Re数下,颗粒物在上送侧回的回风形式中其MSD较大.总体上看上送侧回的回风形式具有较低的悬浮颗粒数和更高的室内空气品质.  相似文献   

4.
聂德明  林建忠 《计算物理》2012,29(1):101-107
采用涨落-格子Boltzmann方法对非球形颗粒(二维)的布朗运动进行直接数值模拟.数值结果包括椭圆形、矩形颗粒的速度均方值及速度自相关函数等.研究发现,对于非球形颗粒,其方向性并没有影响能量均分原理的适用性,每个自由度的能量由其速度或角速度的均方值确定,而且计算的颗粒平动温度和转动温度一致.此外,颗粒的速度自相关函数在相对长的时间内以~ct-1的规律衰减,其系数c与颗粒的形状无关.  相似文献   

5.
The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.  相似文献   

6.
杨伟国  钟诚  夏辉 《物理学报》2014,63(21):214705-214705
本文利用浓悬浮液中渗透性颗粒的短时扩散动力学数值模拟的结论,并结合Cohen-de Schepper近似和Percus-Yevick近似,研究了不同粒径渗透性颗粒的有效扩散系数随体积分数和渗透率的变化关系. 结果表明:对于浓悬浮液中一定粒径的渗透性颗粒,其扩散系数随渗透率的增加而增加,随体积分数的增加而减少;具有相同粒径与流体动力学屏蔽深度比值且波数较大的渗透性颗粒,其粒径对扩散的影响可以忽略. 关键词: 渗透性颗粒 有效扩散系数 体积分数 布朗运动短时区域  相似文献   

7.
张颖  郑宇  何茂刚 《物理学报》2018,67(16):167801-167801
光散射技术通过测量悬浮液中布朗运动颗粒的平移扩散系数,得到颗粒流体力学直径或液体黏度.本文由单参数模型入手,建立了低颗粒浓度下,单颗粒平移扩散系数与颗粒集体平移扩散系数和颗粒浓度之间的线性依存关系并将其引入光散射法中,从而对现有的测量方法进行了改进.改进后的测量方法可实现纳米尺度球型颗粒标称直径的测量和液体黏度的绝对法测量.以聚苯乙烯颗粒+水和二氧化硅颗粒+乙醇两个分散系为参考样本,通过实验,验证了改进后方法的可行性.此外,还针对上述两个分散系,实验探讨了温度和颗粒浓度对颗粒集体平移扩散系数的影响规律,发现聚苯乙烯颗粒+水分散系中,颗粒间相互作用表现为引力;二氧化硅颗粒+乙醇分散系中,颗粒间相互作用表现为斥力.讨论了颗粒集体平移扩散系数随颗粒浓度变化规律与第二渗透维里系数的关系.  相似文献   

8.
Experiments quantifying the rotational and translational motion of particles in a dense, driven, 2D granular gas floating on an air table reveal that kinetic energy is divided equally between the two translational and one rotational degrees of freedom. This equipartition persists when the particle properties, confining pressure, packing density, or spatial ordering are changed. While the translational velocity distributions are the same for both large and small particles, the angular velocity distributions scale with the particle radius. The probability distributions of all particle velocities have approximately exponential tails. Additionally, we find that the system can be described with a granular Boyle's law with a van?der?Waals-like equation of state. These results demonstrate ways in which conventional statistical mechanics can unexpectedly apply to nonequilibrium systems.  相似文献   

9.
周光雨  陈力  张鸿雁  崔海航 《物理学报》2017,66(8):84703-084703
Janus颗粒的自驱动力研究对于纳微米尺度驱动力课题具有重要意义,本文针对Pt-SiO_2型Janus颗粒,基于格子Boltzmann模型及动量交换法提出了计算其扩散泳力的方法,通过与实验数据对比修正验证了模型准确性,并通过分析证明了此类Janus颗粒的扩散泳力与速度场无关,进一步模拟比较了不同形状颗粒的自驱运动.分析发现,对于体积相等形状不同的Janus颗粒,扩散泳力主要由轴线投影面积决定,此外反应面积也会对扩散泳力产生影响.  相似文献   

10.
Akira Satoh 《Molecular physics》2013,111(18):2301-2311
We have developed a lattice Boltzmann method based on fluctuation hydrodynamics that is applicable to the flow problem of a particle suspension. In this method, we have introduced the viscosity-modifying method, rather than the velocity-scaling method, in which a modified viscosity is used for generating random forces in lattice Boltzmann simulations. The viscosity-modifying method is found to be applicable to the simulation of a magnetic particle suspension. We have applied this method to the two-dimensional Poiseuille flow of a magnetic suspension between two parallel walls in order to investigate the behavior of magnetic particles in a non-uniform applied magnetic field. From the results of the snapshots, the pair correlation function between the magnetic pole and the magnetic particles and the averaged local particle velocity and magnetization distributions, it was observed that the behavior of the magnetic particles changes significantly depending upon which factor dominates the phenomenon in the balance between the magnetic particle–particle interaction, the non-uniform applied magnetic field and the translational and rotational Brownian motion.  相似文献   

11.
郭伟  杜鲁春  刘真真  杨海  梅冬成 《中国物理 B》2017,26(1):10502-010502
We investigate the transport of a deterministic Brownian particle theoretically, which moves in simple onedimensional, symmetric periodic potentials under the influence of both a time periodic and a static biasing force. The physical system employed contains a friction coefficient that is speed-dependent. Within the tailored parameter regime, the absolute negative mobility, in which a particle can travel in the direction opposite to a constant applied force, is observed.This behavior is robust and can be maximized at two regimes upon variation of the characteristic factor of friction coefficient. Further analysis reveals that this uphill motion is subdiffusion in terms of localization(diffusion coefficient with the form D(t) ~t~(-1) at long times). We also have observed the non-trivially anomalous subdiffusion which is significantly deviated from the localization; whereas most of the downhill motion evolves chaotically, with the normal diffusion.  相似文献   

12.
Akira Satoh 《Molecular physics》2013,111(18):2137-2149
We have developed the basic equation of the orientational distribution function of oblate spheroidal hematite particles with rotational Brownian motion in a simple shear flow under an applied magnetic field. An oblate spheroidal hematite particle has an important characteristic in that it is magnetized in a direction normal to the particle axis. Since a dilute dispersion is addressed in the present study, we have taken into account only the friction force (torque) whilst neglecting the hydrodynamic interactions among the particles. This basic equation has been solved numerically in order that we may investigate the dependence of the orientational distribution on the magnetic field strength, shear rate and rotational Brownian motion and the relationship between the orientational distribution and the transport coefficients such as viscosity and diffusion coefficient. We found that if the effect of the magnetic field is more dominant, the particle inclines in such a way that the oblate surface aligns in the magnetic field direction. If the Peclet number increases and the effect of the shear flow becomes more dominant, the particle inclines such that the oblate surface tilts in the shear flow direction. The viscosity due to the magnetic torque is shown to increase as the magnetic field increases, since the magnetic torque due to the applied magnetic field becomes the more dominant effect. Moreover, the viscosity increase is shown to be more significant for a larger aspect ratio or for a more oblate hematite particle. We have applied the analysis to the problem of particle sedimentation under gravity in the presence of a magnetic field applied in the sedimentation direction. The particles are found to sediment with the oblate surface aligning more significantly in the sedimentation direction as the applied magnetic field strength increases.  相似文献   

13.
Recently, the steady sedimentation profile of a dilute suspension of chemically powered colloids was studied experimentally [J. Palacci et al., Phys. Rev. Lett. 105, 088304 (2010)]. It was found that the sedimentation length increases quadratically with the swimming speed of the active Brownian particles. Here we investigate theoretically the sedimentation of self-propelled particles undergoing translational and rotational diffusion. We find that the measured increase of the sedimentation length is coupled to a partial alignment of the suspension with the mean swimming direction oriented against the gravitational field. We suggest realistic parameter values to observe this polar order. Furthermore, we find that the dynamics of the active suspension can be derived from a generalized free energy functional.  相似文献   

14.
Akira Satoh 《Molecular physics》2014,112(16):2122-2137
We have investigated aggregation phenomena in a suspension composed of rod-like haematite particles by means of Brownian dynamics simulations. The magnetic moment of the haematite particles lies normal to the particle axis direction and therefore the present Brownian dynamics method takes into account the spin rotational Brownian motion about the particle axis. We have investigated the influence of the magnetic particle–field and particle–particle interactions, the shear rate and the volumetric fraction of particles on the particle aggregation phenomena. Snapshots of aggregate structures are used for a qualitative discussion and the cluster size distribution, radial distribution function and the orientational correlation functions of the direction of particle axis and magnetic moment are the focus for a quantitative discussion. The significant formation of raft-like clusters is found to occur at a magnetic particle–particle interaction strength much larger than that required for a magnetic spherical particle suspension. This is because the rotational Brownian motion has a significant influence on the formation of clusters in a suspension of rod-like particles with a large aspect ratio. An applied magnetic field enhances the formation of raft-like clusters. A shear flow does not have a significant influence on the internal structure of the clusters, but influences the cluster size distribution of the raft-like clusters.  相似文献   

15.
徐伟  梁铨廷  万宝年 《光学学报》2005,25(4):57-560
介绍了三高斯拟合技术,首先用单高斯选点拟合了Hα线形分布的远翼,由谱线的多谱勒展宽得出等离子体离子温度为170 eV,再对剩余量进行双高斯拟合,从多谱勒频移求出反射和解吸粒子入射速度分别为3.0×104 m/s和1×104 m/s,从谱线辐射强度推出再循环粒子由60%反射粒子和40%解吸粒子组成。在简化模型下讨论了粒子的输运行为,算出了氢原子密度、体发射系数和粒子约束时间的分布,均与实验结果相符。分析了粒子入射速度大小对粒子约束时间的影响,结果表明,正常放电下,HT 6M托卡马克粒子约束时间在4~8 ms;反射粒子的速度大小直接决定粒子约束时间的大小和空间分布。  相似文献   

16.
高压电场内细颗粒堆积机理研究   总被引:1,自引:0,他引:1  
细颗粒的堆积既是电厂尾部除尘系统的核心问题,也是航天领域空间环境内限制动力或光学元件性能的关键问题。电场力因具有长程有效性和强可操作性成为控制细颗粒堆积的主要手段。本文通过微观实验研究了高压平行板电场间细颗粒堆积的机理,观察到颗粒在预极化、预荷电、变外电场电压等工况下的堆积形貌,并发展了图像处理的方法统计堆积颗粒数。研究表明,偶极力是外电场下颗粒成链的主因,而颗粒的倒伏则是来自曳力的作用,颗粒链的极限高度主要受外电场场强和颗粒堆积结构的影响。  相似文献   

17.
基于超二次曲面的颗粒材料缓冲性能离散元分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王嗣强  季顺迎 《物理学报》2018,67(9):94501-094501
自然界或工业中普遍是由非球形颗粒组成的复杂体系,与球形颗粒相比,非球形颗粒间的高离散和咬合互锁可使冲击载荷引起的能量有效衰减实现缓冲作用.基于连续函数包络的超二次曲面单元能准确地描述非球形颗粒的几何形态,并可精确地计算单元间的接触碰撞作用.本文采用离散元方法对冲击载荷作用下非球形颗粒物质的缓冲性能进行数值分析,并与圆柱体冲击的理论结果和球体冲击的实验结果进行对比验证.在此基础之上,进一步研究了筒底作用力在不同颗粒层厚度和形状等因素影响下的变化规律.计算结果表明:不同颗粒形状都存在一个临界厚度H_c.当HH_c时,缓冲率随H的增加而增加;当HH_c时,缓冲率的变化不再显著并趋于稳定值.此外,减小颗粒表面尖锐度和增加或减小圆柱形和长方形颗粒的长宽比都会提高颗粒材料的缓冲效果.  相似文献   

18.
By estimating the force and torque acting on the cube for the two cases of a uniform flow field and a rotational flow field, we have discussed whether or not there is a coupling between the translational and the rotational motion. From the characteristics of the friction coefficients, we may understand that there is no coupling between the translation motion and the rotational motion in the situation of the Reynolds number being sufficiently smaller than unity. In contrast, in the case of a non-slow flow field with the Reynolds number larger than unity, the coupling characteristics of the motion of a cube is certainly recognised and therefore the interaction with the ambient fluid is characterised by a variety of friction coefficients including friction coefficients that relate the forces acting on the cube to the angular velocities of the rotational motion. Hence, the employment of these translational and rotational diffusion coefficients for a cube enables the implementation of Brownian dynamics simulations for a suspension composed of cubic particles in order to analyse the dynamic characteristics of a cubic particle suspension.

Highlights
  1. We have considered a flow problem around a cube in order to numerically clarify the characteristics of the translational and rotational friction or diffusion coefficients.

  2. In a slow flow field the motion of the cube need only to be characterised by two friction coefficients, i.e. the translational and rotational friction coefficients.

  3. In the case of a non-slow flow field, the coupling characteristics between the translational motion and the rotational motion are recognised.

  4. Employment of these diffusion coefficients enables the implementation of Brownian dynamics simulations for a suspension composed of cubic particles.

  相似文献   

19.
In a swirled circular container, granular particles can change their sense of rotation when the packing density is increased, exhibiting a transition from rotational to reptational motion. In addition, here we report a ‘snake mode’ that arises at a lower packing density, where particles form a chain like cluster that rotates with the same frequency as the container. We investigate experimentally transitions between these three modes under the influence of geometrical distortions which break the rotational symmetry of the container. The driving mechanism for the rotational motion of the clusters is also discussed.  相似文献   

20.
This research focuses on numerically investigating the self-diffusion coefficient and velocity autocorrelation function (VACF) of a dissipative particle dynamics (DPD) fluid as a function of the conservative interaction strength. Analytic solutions to VACF and self-diffusion coefficients in DPD were obtained by many researchers in some restricted cases including ideal gases, without the account of conservative force. As departure from the ideal gas conditions are accentuated with increasing the relative proportion of conservative force, it is anticipated that the VACF should gradually deviate from its normally expected exponentially decay. This trend is confirmed through numerical simulations and an expression in terms of the conservative force parameter, density and temperature is proposed for the self-diffusion coefficient. As it concerned the VACF, the equivalent Langevin equation describing Brownian motion of particles with a harmonic potential is adapted to the problem and reveals an exponentially decaying oscillatory pattern influenced by the conservative force parameter, dissipative parameter and temperature. Although the proposed model for obtaining the self-diffusion coefficient with consideration of the conservative force could not be verified due to computational complexities, nonetheless the Arrhenius dependency of the self-diffusion coefficient to temperature and pressure permits to certify our model over a definite range of DPD parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号