首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王素新  李玉现  王宁  刘建军 《物理学报》2016,65(13):137302-137302
研究了连接在正常金属电极和超导电极之间的耦合Majorana束缚态(MBSs)T形双量子点结构中的Andreev反射.研究发现,对于T形双量子点结构,当入射能量等于边耦合量子点能级时Andreev反射电导出现Fano振荡,连接MBSs之后,零费米能附近出现一对新的Fano型振荡峰.如果忽略两个MBSs之间的相互作用,零费米能点的Andreev反射电导为定值1/2G_0(G_0=2e~2/h),不受量子点能级、双量子点之间耦合强度以及量子点与MBSs之间的耦合强度的影响.此外,在没有耦合MBSs的T形双量子点结构中,调节双量子点间的耦合强度可以使零费米能附近的Andreev反射电导出现由共振带向反共振带的转变,而耦合MBSs之后,又可以使反共振消失转而出现新的共振峰.  相似文献   

2.
We investigate mesoscopic transport through a system that consists of a central quantum dot (QD) and two single-wall carbon nanotube (SWCN) leads in the presence of a rotating magnetic field. The spin-flip effect is induced by the rotating magnetic field, and the tunnelling current is sensitively related to the spin-flip effect. We present the calculations of charge and spin current components to show the intimate relations to the SWCN leads. Zeeman effect is important when the applied magnetic field is strong enough. The current characteristics are quite different when the source-drain bias is zero (eV=0) and nonzero (eV≠0). The asymmetric peak and valley of spin current versus gate voltage exhibit Fano resonance. Multi-resonant peaks of spin current versus photon energy ħω reflect the structure of CN quantum wires, as well as the resonant photon absorption and emission effect. The matching-mismatching of channels in the CN leads and QD results in novel spin current structure by tuning the frequency.  相似文献   

3.
王素新  李玉现  刘建军 《中国物理 B》2016,25(3):37304-037304
Andreev reflection(AR) in a normal-metal/quantum-dot/superconductor(N–QD–S) system with coupled Majorana bound states(MBSs) is investigated theoretically. We find that in the N–QD–S system, the AR can be enhanced when coupling to the MBSs is incorporated. Fano line-shapes can be observed in the AR conductance spectrum when there is an appropriate QD–MBS coupling or MBS–MBS coupling. The AR conductance is always e~2/2h at the zero Fermi energy point when only QD–MBSs coupling is considered. In addition, the resonant AR occurs when the MBS–MBS coupling roughly equals to the QD energy level. We also find that an AR antiresonance appears when the QD energy level approximately equals to the sum of the QD–MBS coupling and the MBS–MBS coupling. These features may serve as characteristic signatures for the probe of MBSs.  相似文献   

4.
Transport properties are investigated through a crossbar‐shaped structure formed by a quantum dot (QD) coupled to two normal leads and embedded between two 1D topological superconductors (TSCs). Each TSC hosts Majorana‐bound states (MBSs) at its ends, which can interact between them with an effective coupling strength. A signature of bound states in continuum (BIC) is found in the MBSs spectral function. By allowing finite inter MBSs coupling, BICs splitting is observed and shows projection in transmission for asymmetric coupling case as quasi‐BICs. As a consequence, it is also shown that the Fano effect, arising from interference phenomena between MBSs hybridization trough QD, is observed with a half‐integer amplitude modulation. It is believed that the findings can help to better understand the properties of MBSs and their interplay with QDs.  相似文献   

5.
江兆潭  仲成成 《中国物理 B》2016,25(6):67302-067302
We investigate the quantum transport properties through a special kind of quantum dot(QD) system composed of a serially coupled multi-QD-pair(multi-QDP) chain and side-coupled Majorana bound states(MBSs) by using the Green functions method,where the conductance can be classified into two kinds:the electron tunneling(ET) conductance and the Andreev reflection(AR) one.First we find that for the nonzero MBS-QDP coupling a sharp AR-induced zero-bias conductance peak with the height of e~2/h is present(or absent) when the MBS is coupled to the far left(or the other) QDP.Moreover,the MBS-QDP coupling can suppress the ET conductance and strengthen the AR one,and further split into two sub-peaks each of the total conductance peaks of the isolated multi-QDPs,indicating that the MBS will make obvious influences on the competition between the ET and AR processes.Then we find that the tunneling rate ΓLis able to affect the conductances of leads L and R in different ways,demonstrating that there exists a ΓL-related competition between the AR and ET processes.Finally we consider the effect of the inter-MBS coupling on the conductances of the multi-QDP chains and it is shown that the inter-MBS coupling will split the zero-bias conductance peak with the height of e~2/h into two sub-peaks.As the inter-MBS coupling becomes stronger,the two sub-peaks are pushed away from each other and simultaneously become lower,which is opposite to that of the single QDP chain where the two sub-peaks with the height of about e~2/2h become higher.Also,the decay of the conductance sub-peaks with the increase of the MBS-QDP coupling becomes slower as the number of the QDPs becomes larger.This research should be an important extension in studying the transport properties in the kind of QD systems coupled with the side MBSs,which is helpful for understanding the nature of the MBSs,as well as the MBS-related QD transport properties.  相似文献   

6.
The pure spin transport in an entire metallic single-wall carbon-nanotube (SWCN) interacting quantum dot (QD) system is investigated by using non-equilibrium Green's function (NEGF) technique. The novel spin current performance introduced by one constant and one rotating magnetic fields shows the unique four-fold degenerate electron shell structure which exists the SWCN QD sensitively. Spin transport properties can be designed by tuning the orbital and Zeeman configuration in the central resonant region, which are greatly influenced by the Coulomb interaction and the magnetic fields.  相似文献   

7.
By means of the Keldysh Green's function method, we investigate the spin-polarized electron transport in a three-terminal device, which is composed of three normal metal leads and two serially-coupled quantum dots (QDs). The Rashba spin-orbit interaction (RSOI) is also considered in one of the QDs. We show that the spin-polarized charge current with arbitrary spin polarization can be obtained because of the quantum spin interference effect arising from the Rashba spin precession phase, and it can be modulated by the system parameters such as the applied external voltages, the RSOI strength, the QD levels, as well as the dot-lead coupling strengths. Moreover, a fully spin-polarized current or a pure spin current without any accompanying charge current can also be controlled to flow in the system. Our findings indicate that the proposed model can serve as an all-electrical spin device in spintronics field.  相似文献   

8.
The thermoelectric transport in the system composed of a quantum dot in contact with superconducting, ferromagnetic and normal metal electrodes has been studied. Such a system can support pure spin current in the normal electrode. In the limit of a large superconducting gap and weak coupling between the dot and the electrodes we investigate the sub-gap charge and spin transport via Andreev mechanism using the standard master equation technique, which is known to be valid in the sequential tunnelling regime. The Zeeman splitting of the dot level induces pure spin current in the ferromagnetic electrode under an appropriate bias. This opens a novel possibility to switch the spin current between two electrodes by electric means. The calculated spin and charge thermopower coefficients attain very large values, of the order of a few hundreds μV K(-1), and show similar dependences on the position of the on-dot energy level and temperature.  相似文献   

9.
《Current Applied Physics》2015,15(4):520-527
We present a comprehensive analysis about the transport properties of a quantum dot (QD) system with a side-coupled Majorana zero mode. Our calculation result shows that when the coupling manners between the two leads and QDs are identical, the local Andreev reflection and the interlead normal tunneling have the same magnitude at the zero-bias limit. Accordingly, the zero-bias conductance value is always equal to e2/2h, which is exactly one half of the resonant-tunneling conductance. This result is independent of the level number and the level distribution in the single-QD case, and in the coupled-QD case it is irrelevant to the geometry of the QD molecule. The universal transport property is a powerful evidence for the feasibility to detect the MBSs based on a QD circuit. This result also means that the QD condition is not a key factor to achieve the detection. On the other hand, if the decoupling phenomenon appears, the Majorana zero mode may play a trivial role in contributing to the conductance property.  相似文献   

10.
The resonant behaviors of spin-dependent linear AR conductance, the spin-dependent AR current, the electron occupation number and spin accumulation in the QD are theoretically investigated in the FM/QD/SC system with intradot spin-flip scattering. The novel resonant behaviors of spin-dependent AR conductance versus Fermi energy are revealed, which are rather different from the AR conductance versus the dot's energy level case [Cao et al., Phys. Rev. B 70 (2004) 235341]. It is proved that the split of the resonant peak can be induced by the competition between the coupling strengths to the FM and SC leads, the intradot spin-flip scattering, and the gate voltage. The number, the widths, and the distance of the peaks could be controlled by tuning the relevant parameters. The resonance of AR current can take place only when the energy level of QD lines up with the right lead chemical potential and blows the left lead chemical potential. The magnitude of the resonant AR current depends on the number of resonant levels involved in the Andreev tunneling process. It is also proved that the spin-flip scattering can suppress the spin accumulation effectively, and induce the spin polarization of AR conductance and AR current simultaneously. The results make us understand better the fundamental in this system, and are useful for the design of spintronic devices.  相似文献   

11.
We have investigated the mesoscopic transport through the system with a quantum dot (QD) side-coupled to a toroidal carbon nanotube (TCN) in the presence of spin-flip effect. The coupled QD contributes to the mesoscopic transport significantly through adjusting the gate voltage and Zeeman field applied to the QD. The compound TCN-QD microstructure is related to the separate subsystems, the applied external magnetic fields, as well as the combination of subsystems. The spin current component Izs is independent on time, while the spin current components Ixs and Iys evolve with time sinusoidally. The rotating magnetic field induces novel levels due to the spin splitting and photon absorption procedures. The suppression and enhancement of resonant peaks, and semiconductor-metal phase transition are observed by studying the differential conductance through tuning the source-drain bias and photon energy. The magnetic flux induces Aharonov-Bohm oscillation, and it controls the tunnelling behavior due to adjusting the flux. The Fano type of multi-resonant behaviors are displayed in the conductance structures by adjusting the gate voltage Vg and the Zeeman field applied to the QD.  相似文献   

12.
羊富彬 《理论物理通讯》2021,73(3):35702-155
We consider a single-level quantum dot(QD)and a topological superconducting wire hosting Majorana bound states at its ends.By the equation of motion method,we give the analytical Green’s function of the QD in the noninteracting and the infinite interacting case.We study the effects of QD energy level and the spin polarization on the density of states(DOS)and linear conductance of the system.In the noninteracting case,the DOS resonance shifts with the change of energy level and it shows bimodal structure at large spin polarization strength.In the infinite interacting case,the up-spin linear conductance first increases and then decreases with the increase of spin polarization strength,but the down-spin is stable.However,the DOS shows a splitting phenomenon in the large energy level with the increase of spin polarization strength.This provides an interesting way to explore the physical properties of such spin dependent effect in the hybrid Majorana QD systems.  相似文献   

13.
The quantum dynamics of carriers bound to helical tube surfaces is investigated in a thin-layer quantization scheme. By numerically solving the open-boundary Schrödinger equation in curvilinear coordinates, geometric effect on the coherent transmission spectra is analysed in the case of single propagating mode as well as multimode. It is shown that, the coiling endows the helical nanotube with different transport properties from a bent cylindrical surface. Fano resonance appears as a purely geometric effect in the conductance, the corresponding energy of quasibound state is obviously influenced by the torsion and length of the nanotube. We also find new plateaus in the conductance. The transport of double-degenerate mode in this geometry is reminiscent of the Zeeman coupling between the magnetic field and spin angular momentum in quasi-one-dimensional structure.  相似文献   

14.
We study the electron transport through a special quantum-dot(QD)structure composed of three QDs and two Majorana bound states(MBSs)using the nonequilibrium Green’s function technique.This QD-MBS ring structure includes two channels with the two coupled MBSs being Channel 1 and one QD being Channel 2,and three types of transport processes such as the electron transmission(ET),the Andreev reflection(AR),and the crossed Andreev reflection(CAR).By comparing the ET,AR,and CAR processes through Channels 1 and 2,we make a systematic study on the transport properties of the QD-MBS ring.It is shown that there appear two kinds of characteristic transport patterns for Channels 1 and 2,as well as the interplay between the two patterns.Of particular interest is that there exists an AR-assisted ET process in Channel 2,which is different from that in Channel 1.Thus a clear"X"pattern due to the ET and AR processes appears in the ET,AR,and CAR transmission coefficients.Moreover,we study how Channel 2 affects the three transport processes when Channel 1 is tuned in the ET and CAR regimes.It is shown that the transport properties of the ET,AR and CAR processes can be adjusted by tuning the energy level of the QD embedded in Channel 2.We believe this research should be a helpful reference for understanding the transport properties in the QD-MBS coupled systems.  相似文献   

15.
《Physics letters. A》2020,384(21):126424
We investigate the Kondo-assistant Aharonov-Bohm (AB) transport in a Quantum dot (QD) coupled with a topological Majorana wire. We noted that the conductance exhibits sensitive dependence on the phase factor of AB ring when the wire-QD coupling strength changes. The DOS resonance split when the coupling strength changes from small to large. The current is determined by the Kondo transport characteristics presented by the quantum dots (QDs). Also, the transport results show different p-dependence properties under parallel and anti-parallel leads alignment. We believe that these results can be helpful for understanding the Majorana-QD coupling properties as well as the detection of the Majorana bound states.  相似文献   

16.
We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The IV characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa.  相似文献   

17.
The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio.  相似文献   

18.
We show that in the metallic phase of a two dimensional electron gas the spin-orbit coupling due to structure inversion asymmetry leads to a characteristic anisotropy in the magnetoconductance. Within the assumption that the metallic phase can be described by a Fermi liquid, we compute the conductivity in the presence of an in-plane magnetic field. Both the spin-orbit coupling and the Zeeman coupling with the magnetic field give rise to two spin subbands, in terms of which most of the transport properties can be discussed. The strongest conductivity anisotropy occurs for Zeeman energies of the order of the Fermi energy corresponding to the depopulation of the upper spin subband. The energy scale associated with the spin-orbit coupling controls the strength of the effect. More in particular, we find that the detailed behavior and the sign of the anisotropy depends on the underlying scattering mechanism. Assuming small angle scattering to be the dominant scattering mechanism our results agree with recent measurement on Si-MOSFET's in the vicinity of the metal-insulator transition. Received 11 July 2001  相似文献   

19.
Nonequilibrium electron and spin transport properties in a parallel double quantum dot (QD) Fano interferometer are theoretically studied. With the shift of gate voltage around the chemical potential of either lead, we find the Fano lineshapes in the differential conductance spectra, which is sensitively determined by the bias voltage strength and appropriate QD level distributions. The intradot Coulomb interactions modulate the Fano interference in a substantial way and can induce the emergence of negative differential conductance, because of its nontrivial role in splitting the QD levels. In the presence of a local Rashba spin-orbit coupling, the interplay between the magnetic and Rashba fields induces the occurrence of the nonequilibrium spin-related Fano interference, different from the linear-transport results. Furthermore, the striking Coulomb-driven spin accumulation in the ‘resonant-channel’ QD appears.  相似文献   

20.
肖贤波  李小毛  陈宇光 《物理学报》2009,58(11):7909-7913
理论上研究了含stubs的Rashba自旋轨道耦合(spin-orbit coupling, SOC)量子波导系统的自旋极化输运性质. 利用晶格格林函数方法,发现由于stubs和SOC产生的势阱使系统中出现束缚态,这些束缚态与传播态之间相互干涉导致电导中出现Fano共振结构,同时在对应的自旋极化率中也出现Fano共振或反共振结构. 此外,由于系统结构的突变使电子被反向散射和量子干涉效应,电导中出现一系列的共振峰. 但是,当系统加上外磁场后,所有这些效应都被抑制, 系统重新出现量子化电导, 同时自旋电导也出 关键词: 量子波导 自旋极化输运 自旋轨道耦合  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号