首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
吴士超  秦立国  景俊  杨国宏  王中阳 《中国物理 B》2016,25(5):54203-054203
We theoretically investigate the optomechanical induced transparency(OMIT) phenomenon in a two-cavity system which is composed of two optomechanical cavities. Both of the cavities consist of a fixed mirror and a high-Q mechanical resonator, and they couple to each other via a common waveguide. We show that in the presence of a strong pump field applied to one cavity and a weak probe field applied to the other, a triple-OMIT can be observed in the output field at the probe frequency. The two mechanical resonators in the two cavities are identical, but they lead to different quantum interference pathways. The transparency windows are induced by the coupling of the two cavities and the optical pressure radiated to the mechanical resonators, which can be controlled via the power of the pump field and the coupling strength of the two cavities.  相似文献   

2.
We propose a scheme that can generate tunable double optomechanically induced transparency in a hybrid optomechanical cavity system.In this system, the mechanical resonator of the optomechanical cavity is coupled with an additional mechanical resonator and the additional mechanical resonator can be driven by a weak external coherently mechanical driving field.We show that both the intensity and the phase of the external mechanical driving field can control the propagation of the probe field, including changing the transmission spectrum from double windows to a single-window.Our study also provides an effective way to generate intensity-controllable, narrow-bandwidth transmission spectra, with the probe field modulated from excessive opacity to remarkable amplification.  相似文献   

3.
In this study, the probe response of a cavity optomechanical system with periodic modulation of the optomechanical coupling is investigated. The modulation arises from the beat effect between two external coherent driving lights, with the beat frequency matching the modulation frequency. The transmission coefficient is derived for the probe field and significant amplification, rather than absorption in the conventional optomechanically induced transparency schemes, is observed near the transparent point when the modulation is introduced. In addition, the coupling modulation can also enhance the slow light effect.  相似文献   

4.
Li-Wei Liu 《中国物理 B》2022,31(10):103701-103701
We theoretically investigated a second-order optomechanical-induced transparency (OMIT) process of a hybrid optomechanical system (COMS), which a Bose—Einstein condensate (BEC) in the presence of atom—atom interaction trapped inside a cavity with a moving end mirror. The advantage of this hybrid COMS over a bare COMS is that the frequency of the second mode is controlled by the s-wave scattering interaction. Based on the traditional linearization approximation, we derive analytical solutions for the output transmission intensity of the probe field and the dimensionless amplitude of the second-order sideband (SS). The numerical results show that the transmission intensity of the probe field and the dimensionless amplitude of the SS can be controlled by the s-wave scattering frequency. Furthermore, the control field intensities, the effective detuning, the effective coupling strength of the cavity field with the Bogoliubov mode are used to control the transmission intensity of the probe field and the dimensionless amplitude of the SS.  相似文献   

5.
《中国物理 B》2021,30(9):94205-094205
We theoretically explore the tunability of optomechanically induced transparency(OMIT) phenomenon and fast–slow light effect in a loop-coupled hybrid optomechanical system in which two optical modes are coupled to a common mechanical mode. In the probe output spectrum, we find that the interference phenomena OMIT caused by the optomechanical interactions and the normal mode splitting(NMS) induced by the strong tunnel coupling between the cavities can be observed. We further observe that the tunnel interaction will affect the distance and the heights of the sideband absorption peaks. The results also show that the switch from absorption to amplification can be realized by tuning the driving strength because of the existence of stability condition. Except from modulating the tunnel interaction, the conversion between slow light and fast light also can be achieved by adjusting the optomechanical interaction in the output field. This study may provide a potential application in the fields of high precision measurement and quantum information processing.  相似文献   

6.
提出一个杂化腔光力系统理论方案,利用两纳米机械振子间的库仑耦合作用实现弱探测光的双光力诱导透明窗口.研究边带可分辨区域和红失谐情况下双光力诱导透明窗口的可调特性.数值计算表明:两纳米振子间的库仑作用可有效地使单光力诱导透明窗口劈裂为双透明窗口.随着库仑耦合强度的增大,两透明窗口间的距离对称性地拉大;其次,光力腔衰减率的改变对两透明窗口的位置和深度无影响,仅对两透明窗口的宽度产生细微改变,测量精度可在坏腔情形下得到很好的保持;另外,仅增加参量放大器的非线性增益参量将使两透明窗口变宽,而引入驱动参量放大器的光场相位,利用相位匹配可以产生比空腔情形更加狭窄陡峭的双透明窗口,可用于比空腔情况更加精密的测量.  相似文献   

7.
We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime.We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su-Schrieffer Heeger(SSH)model via designing the effective optomechanical coupling.Especially,the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the opto mechanical coupling.We stress that the to pological phase transition is mainly induced by the decay of the cavity field,which is counter-intuitive since the dissipation is usually detrimental to the system.Also,we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice.We find that the quantum st ate transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields.Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform.  相似文献   

8.
《中国物理 B》2021,30(5):54209-054209
We systematically investigate the four-wave mixing(FWM) spectrum in a dual-cavity hybrid optomechanical system,which is made up of one optical cavity with an ensemble of two-level atoms and another with a mechanical oscillator. In this work, we propose that the hybrid dual-cavity optomechanical system can be employed as a highly sensitive mass sensor due to the fact that the FWM spectrum generated in this system has a narrow spectral width and the intensity of the FWM can be easily tuned by controlling the coupling strength(cavity–cavity, atom–cavity). More fascinatingly, the dual-cavity hybrid optomechanical system can also be used as an all-optical switch in view of the easy on/off control of FWM signals by adjusting the atom-pump detuning to be positive or negative. The proposed schemes have great potential applications in quantum information processing and highly sensitive detection.  相似文献   

9.
We study the generation of quadruple-transparency windows and the implementation of a conversion between slow and fast light in a hybrid optomechanical system. By demonstrating the generation of these transparency windows one by one, we analyze the physical mechanism through which each transparency window forms in detail. Additionally, we discuss how the system parameters affect the formation of transparency windows and conclude that the location, width, and absorption of each transparency window can be arbitrarily manipulated by varying the appropriate parameters. Moreover, when the pump field is changed from red to blue detuning, conversions between slow and fast light occur in the output field. These interesting properties of the output field can be applied to achieve the coherent control and manipulation of light pulses using cavity optomechanical system.  相似文献   

10.
夏文清  於亚飞  张智明 《中国物理 B》2017,26(5):54210-054210
We propose a system for achieving some adjustable quantum coherence effects, including the normal-mode splitting(NMS), the optomechanically induced transparency(OMIT), and the optomechanically induced absorption(OMIA). In this system, two tunnel-coupled optomechanical cavities are each driven by a coupling field and coupled to an atomic ensemble.Besides, one of the cavities is also injected with a probe field. When the system works under different conditions, we can obtain the NMS, the OMIT, and the OMIA, respectively. These effects can be flexibly adjusted by the tunnel coupling between the two cavities, the power of the coupling lasers, and the coupling strength between the atomic ensembles and the cavity fields. Furthermore, we can realize the OMIT even if the oscillating mirrors have relatively larger decay rates.  相似文献   

11.
马永红  周玲 《中国物理 B》2013,22(2):24204-024204
We propose a feasible scheme to generate electromagnetically induced transparency(EIT) and quadripartite macroscopic entanglement in an optomechanical system with one fixed mirror and three movable perfectly reflecting mirrors.We explore the EIT phenomena in this optomechanical system.Results show the appearance of EIT dips in the output field.Moreover,we demonstrate how steady-state quadripartite entanglement can be generated via radiation pressure.We also quantify the bipartite entanglement in each field-mirror subsystem and in the mirror-mirror subsystem.Findings show that a high intensity of entanglement between two subsystems can be achieved.  相似文献   

12.
We present a mechanism for double transparency in an optomechanical system. This mechanism is based on the coupling of a moving cavity mirror to a second mechanical oscillator. Due to the purely mechanical coupling and the radiation pressure, three pathways are established for excitations of the probe photons into the cavity photons. Destructive interference occurs at two different frequencies, leading to double transparency to the probe field. It is the coupling strength between the mechanical oscillators that determines the locations of the transparency windows. Moreover, the normal splitting appears for the generated Stokes field and the four-wave mixing process is inhibited on resonance.  相似文献   

13.
The dynamics of a microresonator in detuned whispering-gallery modes (WGM) cavity opto-mechanical system are investigated by the quantum Langevin equation. A WGM cavity coupling to two parallel waveguides is devised to study the transmission and reflection of this system. In single mode WGM cavity, without optomechanical coupling, both the transmission and reflection of the cavity present a Lorentzian dip and peak. When the coupling between the cavity mode and mechanical mode is considered, the transmission and reflection of the optomechanical cavity show “W” and “M” shape mode splitting. Moreover, under the action of a controlling and a probe laser, the output field at the probe frequency presents electromagnetically induced transparency (EIT)-like spectrum in the system. We give the physical origin of EIT-like and the pump-probe response for the WGM shares all the features of the Λ system in atoms. Further, due to backscattering, the two traveling waves in WGM are coupled with a rate γ. The transmission and reflection of the optomechanical cavity display three modes splitting in the spectra with optomechanical coupling between the two cavity modes and the mechanical mode.  相似文献   

14.
谷开慧  严冬  张孟龙  殷景志  付长宝 《物理学报》2019,68(5):54201-054201
随着纳米科技以及半导体技术的迅猛发展,光力诱导透明、快慢光和光存储以及其他在光力系统中发现的量子光学和非线性光学效应成为人们目前研究的热点.本文将薄膜腔光力系统同被束缚在腔中的二能级冷原子系综相耦合,通过直接在薄膜振子上引入弱辅助驱动场来研究该原子辅助光力系统中原子和相位对量子相干性质及其快慢光的调控.经过分析发现,通过改变辅助驱动场的强度可直接实现对光力诱导透明窗口深度的调控,通过改变辅助场与探测场之间的相位差,可实现输出的探测场在"吸收"、"透明"和"增益"之间相互转换,进而对弱探测场进行动态调控实现光开关.与此同时,还发现系统的群延迟时间随相位差的改变呈周期性变化.通过调节相位差及原子数,不但可以改变群延迟时间,还可实现快慢光之间的相互转换.  相似文献   

15.
石海泉  谢智强  徐勋卫  刘念华 《物理学报》2018,67(4):44203-044203
本文提出在多模光力系统中实现声子阻塞.多模光力系统由一个机械模和两个光学模组成.研究发现,当光学模与机械模同时受到外加驱动场作用时,即使在弱光力耦合条件下也可以实现声子阻塞效应,即非传统声子阻塞效应;给出了非传统声子阻塞效应出现的最佳条件.另外,发现通过调节外加驱动场间强度的比值和相位差可以控制声子的统计性质,这为实现可控的单声子源提供了一个有效方法.最后,讨论了热声子对非传统声子阻塞的不利影响,发现适当提高驱动场强度有利于观测非传统声子阻塞效应.  相似文献   

16.
We study theoretically the propagation of slow light in a hybrid BEC–optomechanical system comprising a Bose–Einstein condensate (BEC) trapped inside an optical cavity with a moving end mirror. We show that when the system is driven by a weak probe in the presence of a strong laser field, there exists an analog of the electromagnetically induced transparency (EIT) in coupled BEC–optomechanical systems. When the coupling of the cavity field with a mechanical mirror and the condensate mode is considered simultaneously, three absorption peaks appear in the output spectrum of the probe field. The central absorption peak appears in the reflection spectrum of the weak probe field when the pump-probe detuning occurs at half the sum of frequencies of the two oscillators, which corresponds to the long-live dark state. Furthermore, we also study the occurrence of normal mode splitting in the output spectrum of the probe and Stokes fields.  相似文献   

17.
We study opto-electromechanically induced transparency in a hybrid opto-electromechanical system made up of an optical cavity tunneling-coupled to an opto-mechanical cavity, which is capacitively coupled to a charged mechanical oscillator by a charged and moveable mechanical cavity mirror as an interface. By studying the effects of the different parameters on the output field, we propose a scheme to modulate the opto-electromechanically induced transparency(OEMIT). Our results show that the OEMIT with the transparency windows from single to double to triple can be modulated by changing the tunneling, opto-mechanical and electrical couplings. In addition, the explanation of the OEMIT with multi-windows is given by the energy level diagram based on quantum interference. Our investigation will provide an optimal platform to manipulate the transmission of optical field via microfabricated opto-electromechanical device.  相似文献   

18.
Zhong Ding 《中国物理 B》2022,31(7):70304-070304
We study the single-photon blockade (1PB), two-photon blockade (2PB), and photon-induced tunneling (PIT) effects in a cavity-atom optomechanical system in which a two-level atom is coupled to a single-model cavity field via a two-photon interaction. By analyzing the eigenenergy spectrum of the system, we obtain a perfect 1PB with a high occupancy probability of single-photon excitation, which means that a high-quality and efficient single-photon source can be generated. However, PIT often occurs in many cases when we consider 2PB in analogy to 1PB. In addition, we find that a 2PB region will present in the optomechanical system, which can be proved by calculating the correlation function of the model analytically.  相似文献   

19.
王婧 《中国物理 B》2020,(3):245-250
We propose a scheme for realizing the optical nonreciprocal response based a four-mode optomechanical system,consisting of two charged mechanical modes and two linearly coupled optical modes. Two charged mechanical modes are coupled by Coulomb interaction, and two optical modes are coupled to one of mechanical modes by radiation pressure. We numerically evaluate the transmission probability of the probe field to obtain the optimum optical nonreciprocal response parameters. Also, we show that the optical nonreciprocal response is caused by the quantum interference between the optomechanical couplings and the linearly coupled interaction that breaks the time-reversal symmetry.  相似文献   

20.
In this paper, we discuss the transmission properties of weak probe laser field propagate through slab cavity with defect layer of carbon-nanotube quantum dot (CNT-QD) nanostructure. We show that due to spin-orbit coupling, the double electromagnetically induced transparency (EIT) windows appear and the giant Kerr nonlinearity of the intracavity medium can lead to manipulating of transmission coefficient of weak probe light. The thickness effect of defect layer medium has also been analyzed on transmission properties of probe laser field. Our proposed model may be useful for integrated photonics devices based on CNT-QD for applications in all-optical systems which require multiple EIT effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号