首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic order in two-dimensional systems was not supposed to exist at finite temperature.In recent years,the successful preparation of two-dimensional ferromagnetic materials such as CrI_3,Cr_2 Ge_2 Te_6,and Fe_3 GeTe_2 opens up a new chapter in the remarkable field of two-dimensional materials.Here,we report on a theoretical analysis of the stability of ferromagnetism in Fe_3 GeTe_2.We uncover the mechanism of holding long-range magnetic order and propose a model to estimate the Curie temperature of Fe_3 GeTe_2.Our results reveal the essential role of magnetic anisotropy in maintaining the magnetic order of two-dimensional systems.The theoretical method used here can be generalized to future research of other magnetic two-dimensional systems.  相似文献   

2.
《中国物理 B》2021,30(9):97504-097504
Since the discovery of magnetism in two dimensions,effective manipulation of magnetism in van der Waals magnets has always been a crucial goal.Ionic gating is a promising method for such manipulation,yet devices gated with conventional ionic liquid may have some restrictions in applications due to the liquid nature of the gate dielectric.Lithium-ion conducting glass-ceramics(LICGC),a solid Li~+ electrolyte,could be used as a substrate while simultaneously acts as a promising substitute for ionic liquid.Here we demonstrate that the ferromagnetism of Fe_3 GeTe_2(FGT) could be modulated via LICGC.By applying a voltage between FGT and the back side of LICGC substrate,Li~+ doping occurs and causes the decrease of the coercive field(H_c) and ferromagnetic transition temperature(T_c) in FGT nanoflakes.A modulation efficiency for of up to ~ 24.6% under V_g=3.5 V at T=100 K is achieved.Our results provide another method to construct electrically-controlled magnetoelectronics,with potential applications in future information technology.  相似文献   

3.
低温下二维绝缘铁磁体的磁振子寿命   总被引:3,自引:0,他引:3       下载免费PDF全文
成泰民  鲜于泽  杜安 《物理学报》2005,54(11):5314-5323
在二维正方绝缘铁磁系统基础上建立了一个磁振子-声子相互作用模型. 利用格林函数方法研究了磁振子-声子相互作用下的二维绝缘铁磁体的磁振子衰减(即-ImΣ*(1)(k)), 计算了布里渊区的主要对称点线上的-ImΣ*(1)(k).发现在布里渊区边界区域磁振子衰减很明显, 但小波矢区(kxa/π<0.22附近)磁振子衰减非常弱, 而且温度很低时磁振子衰减有极大值. 比较了纵向声子与横向声子对磁振子衰减的影响, 也讨论了各项参数的变化对磁振子衰减的影响. 根据关系式-Im*(1)(k)=/(2τ)可以对磁振子寿命进行判断. 关键词: 磁振子-声子相互作用 磁振子衰减 铁磁体 磁振子寿命  相似文献   

4.
Two-dimensional(2D)magnets provide an ideal platform to explore new physical phenomena in fundamental magnetism and to realize the miniaturization of magnetic devices.The study on its domain structure evolution with thickness is of great significance for better understanding the 2D magnetism.Here,we investigate the magnetization reversal and domain structure evolution in 2D ferromagnet Fe3GeTe2(FGT)with a thickness range of 11.2-112 nm.Three types of domain structures and their corresponding hysteresis loops can be obtained.The magnetic domain varies from a circular domain via a dendritic domain to a labyrinthian domain with increasing FGT thickness,which is accompanied by a transition from squared to slanted hysteresis loops with reduced coercive fields.These features can be ascribed to the total energy changes from exchange interaction-dominated to dipolar interaction-dominated with increasing FGT thickness.Our finding not only enriches the fundamental magnetism,but also paves a way towards spintronics based on 2D magnet.  相似文献   

5.
Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline(Co2FeAl)97.8(Al2O3)2.2soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or post annealing. The in-plane uniaxial magnetic anisotropy varies from 50 Oe to 180 Oe(1 Oe = 79.5775 A·m-1) by adjusting the sample’s position. As a result, the ferromagnetic resonance frequency of the film increases from 1.9 GHz to 3.75 GHz.  相似文献   

6.
The two-dimensional square lattice mixed-spin anisotropic Heisenberg ferromagnet with a transverse magnetic field is studied by means of the double-time Green's function. The analytic expressions of the critical temperature, the high-temperature zero-field susceptibilities, the spin-wave velocity, spin-wave stiffness and spin-wave gap are obtained. The phase diagrams in which the critical temperature, the reorientation temperature and the reorientation magnetic field are shown as a function of single-ion anisotropic parameter are discussed.  相似文献   

7.
时志鹏  刘晓敏  李山东 《中国物理 B》2017,26(9):97601-097601
In this study, we observe a strong inverse magnetoelectric coupling in Fe_(52.5)Co_(22.5)B_(25.0)/PZN-PT multiferroic heterostructure, which produces large electric field(E-field) tunability of microwave magnetic properties. With the increase of the E-field from 0 to 8 kV/cm, the magnetic anisotropy field Heffis dramatically enhanced from 169 to 600 Oe, which further leads to a significant enhancement of ferromagnetic resonance frequency from 4.57 to 8.73 GHz under zero bias magnetic field, and a simultaneous decrease of the damping constant α from 0.021 to 0.0186. These features demonstrate that this multiferroic composite is a promising candidate for fabricating E-field tunable microwave components.  相似文献   

8.
We investigate the surface oxidation in a van der Waals ferromagnet Fe3-xGeTe2, a material widely utilized for spintronic applications. While known for its relative air-insensitivity, exposure to air during the handling process (e.g. device or heterostructure fabrication) can lead to reduction or disappearance of its magnetic signal. Comparison of x-ray absorption and x-ray magnetic circular dichroism spectra between pristine and air-exposed Fe3-xGeTe2 confirm a naturally oxidized surface layer on the material. The surface oxide layer has predominantly Fe3+ content. X-ray absorption spectroscopy done on micron-sized exfoliated Fe3-xGeTe2 flakes reveal that the change in the surface chemical properties can be quite significant for thin flakes. The surface modulation of Fe3-xGeTe2 can lead to inaccuracies in characterizing its interfacial magnetic and spin transport properties, and complicate device and heterostructure fabrication processes.  相似文献   

9.
The two-dimensional (2D) magnets provide novel opportunities for understanding magnetism and investigating spin related phenomena in several atomic thickness. Multiple features of 2D magnets, such as critical temperatures, magnetoelectric/magneto-optic responses, and spin configurations, depend on the basic magnetic terms that describe various spins interactions and cooperatively determine the spin Hamiltonian of studied systems. In this review, we present a comprehensive survey of three types of basic terms, including magnetic anisotropy that is intimately related with long-range magnetic order, exchange coupling that normally dominates the spin interactions, and Dzyaloshinskii−Moriya interaction (DMI) that favors the noncollinear spin configurations, from the theoretical aspect. We introduce not only the physical features and origin of these crucial terms in 2D magnets but also many correlated phenomena, which may lead to the advance of 2D spintronics.  相似文献   

10.
具有条纹磁畴结构的磁性薄膜表现出面内转动磁各向异性,对于解决高频电子器件的方向性问题起着至关重要的作用.本文采用射频磁控溅射的方法,研究了NiFe薄膜的厚度、溅射功率密度、溅射气压等制备工艺参数对条纹磁畴结构、面内静态磁各向异性、面内转动磁各向异性、垂直磁各向异性的影响规律.研究发现,在功率密度15.6 W/cm~2与溅射气压2 mTorr(1 Torr=1.33322×102Pa)下生长的NiFe薄膜,表现出条纹磁畴的临界厚度在250 nm到300 nm之间.厚度为300 nm的薄膜比250 nm薄膜的垂直磁各向异性场增大近一倍,从而磁矩偏离膜面形成条纹磁畴结构,并表现出面内转动磁各向异性.高溅射功率密度可以降低薄膜出现条纹磁畴的临界厚度.在相同功率密度15.6 W/cm~2下生长300 nm的NiFe薄膜,随着溅射气压由2 mTorr增大到9 mTorr,NiFe薄膜的垂直磁各向异性场逐渐由1247.8 Oe(1 Oe=79.5775 A/m)增大到3248.0 Oe,面内转动磁各向异性场由72.5 Oe增大到141.9 Oe,条纹磁畴周期从0.53μm单调减小到0.24μm.NiFe薄膜的断面结构表明柱状晶的形成是表现出条纹磁畴结构的本质原因,高功率密度下低溅射气压有利于柱状晶结构的形成,表现出规整的条纹磁畴结构,高溅射气压会导致柱状晶纤细化,面内转动磁各向异性与面外垂直磁各向异性增强,条纹磁畴结构变得混乱.  相似文献   

11.
用反应溅射方法制备了FeRO(R=Hf, Nd, Dy) 薄膜,并在400℃时对样品进行退火处理,x射线衍射和电子衍射结果显示纳米量级的Fe晶粒镶嵌在非晶氧化物基质中.用面内铁磁共振技术仔细测量了样品的共振吸收谱,并分析了局域磁化强度Ms与晶粒尺寸的关系.制备态样品呈现出显著的面内单轴各向异性,退火后单轴各向异性显著减弱,取而代之的是较弱的磁晶各向异性.利用公式(ω/γ)2=(Hres+HK)(Hres+HK+4πMs)求出局域磁化强度Ms,它随晶粒尺寸减小而减小,在晶粒尺寸为5nm时仅约为Fe体材料饱和磁化强度的30%.局域磁化强度与根据Fe的体积百分比算出的体磁化强度相比偏小,并与晶粒尺寸的倒数呈线性关系,说明在晶粒表面存在较强的磁矩钉扎效应. 关键词: 铁磁共振 局域磁化强度 单轴各向异性 磁晶各向异性  相似文献   

12.
《中国物理 B》2021,30(9):97102-097102
The ferromagnetism of two-dimensional(2 D) materials has aroused great interest in recent years, which may play an important role in the next-generation magnetic devices. Herein, a series of 2 D transition metal-organic framework materials(TM-NH MOF, TM = Sc–Zn) are designed, and their electronic and magnetic characters are systematically studied by means of first-principles calculations. Their structural stabilities are examined through binding energies and abinitio molecular dynamics simulations. Their optimized lattice constants are correlated to the central TM atoms. These 2 D TM-NH MOF nanosheets exhibit various electronic and magnetic performances owing to the effective charge transfer and interaction between TM atoms and graphene linkers. Interestingly, Ni-and Zn-NH MOFs are nonmagnetic semiconductors(SM) with band gaps of 0.41 e V and 0.61 e V, respectively. Co-and Cu-NH MOFs are bipolar magnetic semiconductors(BMS), while Fe-NH MOF monolayer is a half-semiconductor(HSM). Furthermore, the elastic strain could tune their magnetic behaviors and transformation, which ascribes to the charge redistribution of TM-3 d states. This work predicts several new 2 D magnetic MOF materials, which are promising for applications in spintronics and nanoelectronics.  相似文献   

13.
A research has been conducted into the dynamics of the 180° domain wall in a cubic ferromagnet with induced magnetic anisotropy, this domain wall moving at a velocity close to the limit one. The Landau–Lifshits equation has been reduced to a modified double Sine–Gordon equation with the highest dispersion. A solution has been found which corresponds to the moving 180° domain wall. This paper has determined the dependencies of the velocity of the domain wall's stationary movement on the quality factor and on the ratio of the induced and the cubic magnetic anisotropy constants in slabs with the developed (0 0 1) and (0 1 1) surfaces.  相似文献   

14.
《中国物理 B》2021,30(9):97505-097505
The two-dimensional(2 D) transition-metal dichalcogenides(TMDCs) have been recently proposed as a promising class of materials for spintronic applications. Here, we report on the all-2 D van der Waals(vd W) heterostructure spin valve device comprising of an exfoliated ultra-thin WS_2 semiconductor acting as the spacer layer and two exfoliated ferromagnetic Fe_3 GeTe_2(FGT) metals acting as ferromagnetic electrodes. The metallic interface rather than Schottky barrier is formed despite the semiconducting nature of WS_2, which could be originated from the strong interface hybridization. The spin valve effect persists up to the Curie temperature of FGT. Moreover, our metallic spin valve devices exhibit robust spin valve effect where the magnetoresistance magnitude does not vary with the applied bias in the measured range up to 50 μA due to the Ohmic property, which is a highly desirable feature for practical application that requires stable device performance. Our work reveals that WS_2-based all-2 D magnetic vd W heterostructure, facilitated by combining 2 D magnets, is expected to be an attractive candidate for the TMDCs-based spintronic applications.  相似文献   

15.
Yu Zhang 《中国物理 B》2021,30(11):118504-118504
Magnetic two-dimensional (2D) van der Waals (vdWs) materials and their heterostructures attract increasing attention in the spintronics community due to their various degrees of freedom such as spin, charge, and energy valley, which may stimulate potential applications in the field of low-power and high-speed spintronic devices in the future. This review begins with introducing the long-range magnetic order in 2D vdWs materials and the recent progress of tunning their properties by electrostatic doping and stress. Next, the proximity-effect, current-induced magnetization switching, and the related spintronic devices (such as magnetic tunnel junctions and spin valves) based on magnetic 2D vdWs materials are presented. Finally, the development trend of magnetic 2D vdWs materials is discussed. This review provides comprehensive understandings for the development of novel spintronic applications based on magnetic 2D vdWs materials.  相似文献   

16.
Zero-field-cooled(ZFC) magnetization,field-cooled(FC) magnetization,ac magnetic susceptibility and major hysteresis loops of itinerant ferromagnet SrRuO3 have been measured at magnetic ordering temperatures ranging from 5 to 160K.An empirical model is proposed to calculate the measured ZFC magnetization.The result indicates that the calculated ZFC magnetization compares well with the measured one.Based on the generalized Preisach model.both the ZFC and FC curves are reproduced by numerical simulations.The critical temperature and critical exponents are determined by measuring the ac magnetic susceptibility in different bias magnetic fields at temperatures in the vicinity of the point of phase transition.  相似文献   

17.
二维磁性材料是近几年新兴的研究领域,该材料在开发自旋电子器件等领域具备良好的应用潜能.为了了解二维磁性材料的磁性质,明确体系内各近邻磁性原子间的磁相互作用非常重要.第一性原理为各近邻磁交换参数的计算奠定了基础.目前各近邻参数的第一性原理计算常用的是能量映射法,但这种方法存在一定的缺陷.本文通过广义布洛赫条件推导了3种常见二维磁性结构的海森伯作用与Dzyaloshinskii-Moriya (DM)相互作用的自旋螺旋色散关系,这3种结构为四方结构,元胞包含一个磁性原子的六角结构,元胞包含两个磁性原子的六角结构.为了将本文推导的自旋螺旋色散关系应用于实际,我们通过第一性原理计算了一些材料的海森伯和DM作用的交换参数,这些材料分别是MnB,VSe2,MnSTe,Cr2I3Cl3.其中,MnSTe和Cr2I3Cl3都属于二维Janus材料,磁性原子层的上下层对称性破缺,整个体系存在DM相互作用.  相似文献   

18.
NiFe/[IrMn/NiFe/IrMn] 5 /[NiFe/IrMn] 4 /NiFe structured exchange-biased multilayer films are designed and prepared by magnetron sputtering. The static and the microwave magnetic properties are systematically investigated. The results reveal that adding a partially pinned ferromagnetic layer can effectively broaden the ferromagnetic resonance linewidth toward the low frequency domain. Moreover, a wideband multi-peak permeability spectrum with a 3.1-GHz linewidth is obtained by overlapping the spectra of different partially pinned ferromagnetic layers and [antiferromagnet/ferromagnet/antiferromagnet] n stacks. Our results show that the linewidth of the sample can be feasibly tuned through controlling the proper exchange bias fields of different stacks. The designed multilayered thin films have potential application for a tunable wideband high frequency noise filter.  相似文献   

19.
The 2D materials with both ferromagnetism and semiconducting properties are desirable for spintronics applications. Here, inspired by the successful synthesis of single-layer CoCl 2 $_2$ , it predicts that Janus single-layer CoClBr is a 2D intrinsic ferromagnetic semiconductor with a direct bandgap of 3.71 eV by first-principles calculations. Single-layer CoClBr exhibits an in-plane magnetic anisotropic energy (MAE) of 542.25 μ $\mu$ eV per Co atom and a Curie temperature (T c $_c$ ) of 89.49 K. Biaxial strain can effectively modulate its bandgap, MAE, and T c $_c$ , but will not change the ferromagnetic ground state. Compressive strain can increase the Curie temperature and switch the spin moment from in-plane direction to out-of-plane direction. Tensile strain can enlarge the bandgap and introduce a direct-to-indirect bandgap transition in CoClBr. The MAE of CoClBr reaches 391.73 μ $\mu$ eV per Co atom and 1560.49 μ $\mu$ eV per Co atom at a compressive strain of -2% and a tensile strain of 5%, respectively. The tunable electronic and magnetic properties of Janus single-layer CoClBr has potential application in low-dimensional spintronics devices.  相似文献   

20.
We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. Th  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号