首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heterojunctions composed of β-Ga_2 O_3 and ZnO films are fabricated on sapphire substrates by using the laser molecular beam epitaxy method. The heterojunction possesses excellent rectifying characteristics with an asymmetry ratio over 105. Prominent solar-blind photoresponse effect is also observed in the formed heterojunction. The photodetector exhibits a self-powered behavior with a fast response speed(rise time and decay time are 0.035 s and 0.032 s respectively) at zero bias. The obtained high performance can be related to the built-in field driven photogenerated electron-hole separation.  相似文献   

2.
Single-crystal GaN layers have been obtained by nitriding β-Ga_2O_3 films in NH_3 atmosphere. The effect of the temperature and time on the nitridation and conversion of Ga_2O_3 films have been investigated. The nitridation process results in lots of holes in the surface of films. The higher nitridation temperature and longer time can promote the nitridation and improve the crystal quality of GaN films. The converted Ga N porous films show the single-crystal structures and lowstress, which can be used as templates for the epitaxial growth of high-quality GaN.  相似文献   

3.
Nitridatedβ-Ga_2O_3(100)substrate was investigated as the substrate for GaN epitaxial growth.The effects of nitridation temperature and surface roughness ofβ-Ga_2O_3 wafers on the formation of GaN were studied.It was found that the most optimized nitridation temperature was 900°C,and hexagonal GaN with preferred orientation was produced on the well-polished wafer.The nitridation mechanism was also discussed.  相似文献   

4.
In this work,(-201) β-Ga_2O_3 films are grown on GaN substrate by metal organic chemical vapor deposition(MOCVD). It is revealed that the β-Ga_2O_3 film grown on GaN possesses superior crystal quality, material homogeneity and surface morphology than the results of common heteroepitaxial β-Ga_2O_3 film based on sapphire substrate. Further, the relevance between the crystal quality of epitaxial β-Ga_2O_3 film and the β-Ga_2O_3/GaN interface behavior is investigated. Transmission electron microscopy result indicates that the interface atom refactoring phenomenon is beneficial to relieve the mismatch strain and improve the crystal quality of subsequent β-Ga_2O_3 film. Moreover, the energy band structure of β-Ga_2O_3/GaN heterostructure grown by MOCVD is investigated by X-ray photoelectron spectroscopy and a large conduction band offset of 0.89 eV is obtained. The results in this work not only convincingly demonstrate the advantages of β-Ga_2O_3 films grown on GaN substrate, but also show the great application potential of MOCVD β-Ga_2O_3/GaN heterostructures in microelectronic applications.  相似文献   

5.
Two-inch Ga_2O_3 films with(ˉ201)-orientation are grown on c-sapphire at 850–1050°C by hydride vapor phase epitaxy. High-resolution x-ray diffraction shows that pure β-Ga_2O_3 with a smooth surface has a higher crystal quality, and the Raman spectra reveal a very small residual strain in β-Ga_2O_3 grown by hydride vapor phase epitaxy compared with bulk single crystal. The optical transmittance is higher than 80% in the visible and near-UV regions, and the optical bandgap energy is calculated to be 4.9 e V.  相似文献   

6.
In this work, we prepared the β-Ga_2O_3@GaN nanowires(NWs) by oxidizing GaN NWs. High-quality hexagonal wurtzite GaN NWs were achieved and the conversion from GaN to β-Ga_2O_3 was confirmed by x-ray diffraction, Raman spectroscopy and transmission electron microscopy. The effect of the oxidation temperature and time on the oxidation degree of GaN NWs was investigated systematically. The oxidation rate of GaN NWs was estimated at different temperatures.  相似文献   

7.
《中国物理 B》2021,30(6):67302-067302
The ultra-wide bandgap semiconductor β gallium oxide(β-Ga_2 O_3) gives promise to low conduction loss and high power for electronic devices. However, due to the natural poor thermal conductivity of β-Ga_2 O_3, their power devices suffer from serious self-heating effect. To overcome this problem, we emphasize on the effect of device structure on peak temperature in β-Ga_2 O_3 Schottky barrier diodes(SBDs) using TCAD simulation and experiment. The SBD topologies including crystal orientation of β-Ga_2 O_3, work function of Schottky metal, anode area, and thickness, were simulated in TCAD, showing that the thickness of β-Ga_2 O_3 plays a key role in reducing the peak temperature of diodes. Hence, we fabricated β-Ga_2 O_3 SBDs with three different thickness epitaxial layers and five different thickness substrates. The surface temperature of the diodes was measured using an infrared thermal imaging camera. The experimental results are consistent with the simulation results. Thus, our results provide a new thermal management strategy for high power β-Ga_2 O_3 diode.  相似文献   

8.
采用传统熔融淬冷法制备了4组高Bi2O3含量的Bi2O3-B2O3-Ga2O3玻璃样品。测试了样品的密度、折射率和透过光谱,并分析了它们和Ga2O3含量之间的关系,拟合了样品的线性折射率随波长的变化曲线。根据Z扫描实验原理,利用钛宝石飞秒激光器测量了800 nm波长下各个样品的三阶非线性折射率n2以及非线性吸收系数β。结果表明:随着Ga2O3含量的增加,样品的线性折射率n0和三阶非线性折射率n2也随之增加,线性折射率最大样品对应的n2和β分别为3.331×10-18m2/W和0.695 cm/GW,表明该系列玻璃样品是一种优良的三阶非线性光学基质材料。  相似文献   

9.
马海林  范多旺  牛晓山 《中国物理 B》2010,19(7):76102-076102
Monoclinic gallium oxide (β-Ga_2O_3) nanobelts are synthesized from gallium and oxygen by thermal evaporation in an argon atmosphere and their NO_2 sensing properties are studied at room temperature.Electron microscopy studies show that the nanobelts have breadths ranging from 30 to 50 nm and lengths up to tens of micrometers.Both the x-ray diffraction (XRD) and the selected are electron diffraction (SAED) examinations indicate that β-Ga_2O_3 nanobelts have grown into single crystals.Room temperature NO_2 sensing tests show that the current of individual β-Ga_2O_3 nanobelt decreases quickly,and then gently when the NO_2 concentration increases from low to high.It is caused by the NO_2 molecule chemisorption and desorption processes in the surface of β-Ga_2O_3 nanobelt.  相似文献   

10.
《中国物理 B》2021,30(5):56110-056110
The electrical characteristics and microstructures of β-Ga_2 O_3 Schottky barrier diode(SBD) devices irradiated with swift heavy ions(2096 Me V Ta ions) have been studied. It was found that β-Ga_2 O_3 SBD devices showed the reliability degradation after irradiation, including turn-on voltage Von, on-resistance Ron, ideality factor n, and the reverse leakage current density Jr. In addition, the carrier concentration of the drift layer was decreased significantly and the calculated carrier removal rates were 5 × 10~6–1.3 × 10~7 cm~(-1). Latent tracks induced by swift heavy ions were observed visually in the whole β-Ga_2 O_3 matrix. Furthermore, crystal structure of tracks was amorphized completely. The latent tracks induced by Ta ions bombardments were found to be the reason for the decrease in carrier mobility and carrier concentration. Eventually,these defects caused the degradation of electrical characteristics of the devices. In terms of the carrier removal rates, theβ-Ga_2 O_3 SBD devices were more sensitive to swift heavy ions irradiation than Si C and Ga N devices.  相似文献   

11.
We report the edge-defined-film-fed(EFG)-grown β-Ga2O3-based Schottky photodiodes.The device has a reverse leakage current of ~nA and a rectified ratio of ~104 at ±5 V.In addition,the photodiode detector shows a dark current of 0.3 pA,a photo-responsivity(R) of 2.875 mA/W,a special detectivity(D*) of 1010 Jones,and an external quantum efficiency(EQE) of 1.4% at zero bias,illustrating a self-powered operation.This work may advance the development of the Ga2O3-based Schottky diode solar-blind photodetectors.  相似文献   

12.
β-Ga_2O_3 MOSFETs are demonstrated on heterogeneous Ga_2O_3-Al_2O_3-Si(GaOISi)substrate fabricated by ion-cutting process.Enhancement(E)-and depletion(D)-modeβ-Ga_2O_3 transistors are realized on by varying the channel thickness(T_(ch)).E-mode GaOISi transistor with a T_(ch)of 15 nm achieves a high threshold voltage V_(TH)of~8 V.With the same T increase,GaOISi transistors demonstrate more stable ON-current I_(ON)and OFF-current I_(OFF)performance compared to the reported devices on bulk Ga_2O_3 wafer.Transistors on GaOISi achieve the breakdown voltage of 522 and 391 V at 25°C and 200°C,respectively.  相似文献   

13.
The energy band alignment at the atomic layer deposited Al_2O_3/β-Ga_2O_3 interface with CHF_3 treatment was characterized by x-ray photoelectron spectroscopy and secondary ion mass spectrometry(SIMS).With additional CHF_3 plasma treatment,the conduction band offset increases from 1.95±0.1 eV to 2.32±0.1 eV;and the valence band offset decreases from 0.21±0.1 eV to-0.16±0.1 eV.As a result,the energy band alignment changes from type I to type II.This energy band alignment transition could be attributed to the downshift of the core-level of Ga 3d,resulting from the Ga–F bond formation in the F-rich interfacial layer,which is confirmed by the SIMS results.  相似文献   

14.
A VO2 thin film has been prepared using a DC magnetron sputtering method and annealing on an F-doped SnO2 (FTO) conductive glass substrate. The FTO/VO2/FTO structure was fabricated using photolithography and a chemical etching process. The temperature dependence of the IV hysteresis loop for the FTO/VO2/FTO structure has been analyzed. The threshold voltage decreases with increasing temperature, with a value of 9.2 V at 20 °C. The maximum transmission modulation value of the FTO/VO2/FTO structure is 31.4% under various temperatures and voltages. Optical modulation can be realized in the structure by applying an electric field.  相似文献   

15.
使用磁控溅射方法制备了β-Ga_2O_3纳米线,并研究了催化性能.制备的样品具有很好的结晶度,衍射峰位对应β相Ga_2O_3.β-Ga_2O_3纳米线形貌为圆锥状,表面粗糙.226nm左右有明显的Ga_2O_3吸收峰,同时在512nm左右也有明显的催化剂Au的吸收峰.称取0.35mg的β-Ga_2O_3纳米线样品,加入300mL浓度为10~(-5) mol/L的亚甲基蓝溶液中,反应2h,降解率达到76.7%.  相似文献   

16.
Laser induced fractal structure on magnetic dielectric thin film   总被引:1,自引:0,他引:1  
The Richardson plots method is employed to measure the fractal dimensions D of the surface of magnetic dielectric film fractured by excimer laser irradiation near the ablation threshold. It is shown that the fractured surfaces are fractal character. The value of D decreases while the laser pulse number increases. This relation may reflect how the fractured surface changes from irregular structure to regular structure with laser pulse number.  相似文献   

17.
氧化镓(Ga_2O_3)纳米材料在紫外透明电极、高温气体传感器、日盲紫外探测器和功率器件等领域具有巨大的应用潜力,而实现高结晶质量和尺寸形貌可控的Ga_2O_3纳米材料是关键.本文通过水热法制备了不同尺寸的羟基氧化镓(GaOOH)纳米棒、纳米棒束和纺锤体,经后期高温煅烧均成功转变为高质量单晶_β-Ga_2O_3纳米材料并较好地保留了原始GaOOH的形态特征.利用X射线衍射(XRD)、拉曼散射光谱(Raman)和场发射扫描电子显微镜(FE-SEM)等表征手段系统研究了前驱液的pH值大小和阴离子表面活性剂浓度对GaOOH和_β-Ga_2O_3纳米材料晶体结构和表面形貌的影响,并深入探讨了不同条件下GaOOH纳米材料的生长机制.此外,室温光致发光谱(PL)测试发现不同形貌的β-Ga_2O_3纳米材料均展现出典型的蓝绿色发射峰和尖锐的红光发射峰,与纳米材料中本征缺陷的存在密切相关.上述研究结果为未来实现高质量β-Ga_2O_3纳米材料的可控制备提供了有益参考.  相似文献   

18.
The electronic structures and optical properties of β-Ga_2O_3 and Si-and Sn-doped β-Ga_2O_3 are studied using the GGA + U method based on density functional theory. The calculated bandgap and Ga 3d-state peak of β-Ga_2O_3 are in good agreement with experimental results. Si-and Sn-doped β-Ga_2O_3 tend to form under O-poor conditions, and the formation energy of Si-doped β-Ga_2O_3 is larger than that of Sn-doped β-Ga_2O_3 because of the large bond length variation between Ga–O and Si–O. Si-and Sn-doped β-Ga_2O_3 have wider optical gaps than β-Ga_2O_3, due to the Burstein–Moss effect and the bandgap renormalization effect. Si-doped β-Ga_2O_3 shows better electron conductivity and a higher optical absorption edge than Sn-doped β-Ga_2O_3, so Si is more suitable as a dopant of n-type β-Ga_2O_3, which can be applied in deep-UV photoelectric devices.  相似文献   

19.
Zi-Hao Chen 《中国物理 B》2023,32(1):17301-017301
The Ga$_{2}$O$_{3}$ films are deposited on the Si and quartz substrates by magnetron sputtering, and annealing. The effects of preparation parameters (such as argon-oxygen flow ratio, sputtering power, sputtering time and annealing temperature) on the growth and properties ($e.g.$, surface morphology, crystal structure, optical and electrical properties of the films) are studied by x-ray diffractometer (XRD), scanning electron microscope (SEM), and ultraviolet-visible spectrophotometer (UV-Vis). The results show that the thickness, crystallization quality and surface roughness of the $\beta $-Ga$_{2}$O$_{3}$ film are influenced by those parameters. All $\beta $-Ga$_{2}$O$_{3 }$films show good optical properties. Moreover, the value of bandgap increases with the enlarge of the percentage of oxygen increasing, and decreases with the increase of sputtering power and annealing temperature, indicating that the bandgap is related to the quality of the film and affected by the number of oxygen vacancy defects. The $I$-$V$ curves show that the Ohmic behavior between metal and $\beta $-Ga$_{2}$O$_{3}$ films is obtained at 900 ${^\circ}$C. Those results will be helpful for the further research of $\beta $-Ga$_{2}$O$_{3}$ photoelectric semiconductor.  相似文献   

20.
Ta~(5+)doped β-Ga_2O_3 single crystals were grown by using the optical floating zone method, and then annealed in the air and nitrogen gas at 1400℃ for 20 hours.The transmittance spectra, photoluminescence(PL), x-ray irradiation spectra, and PL decay profiles of the samples were measured at room temperature.The relevant results show that the optical transmittance of the samples annealed in the air or nitrogen gas was improved.By drawing the(ahv)~2–hv graph,it can be seen that the band gap decreased after being annealed in the air, but increased in nitrogen gas.The PL spectra and x-ray irradiation spectra show that the luminescent intensity of the sample annealed in the air increased substantially,while decreased for the sample annealed in nitrogen.The PL decay time of the Ta:β-Ga_2O_3 annealed in the air increased significantly compared with that of the Ta:β-Ga_2O_3 sample without annealing, but the tendency after annealing in nitrogen gas was opposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号