首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of substrate temperature on structural and dielectric properties of cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 (BZN) thin films prepared by pulsed laser deposition process has been investigated. BZN thin films were deposited on Pt/Ti/SiO2/Si(1 0 0) substrate and in situ annealed at 700 °C. The results indicate that the substrate temperature has a significant effect on the structural and dielectric properties of BZN thin films. The films exhibit a cubic pyrochlore structure in the substrate temperature range from 550 °C to 700 °C and at the annealing temperature of 700 °C. With further increase of substrate temperature to 750 °C, the phases of Bi2O3, BiNbO4 and Bi5Nb3O15 can be detected in the XRD pattern due to the Zn loss. The dielectric constant and loss tangent of the films deposited at 650 °C are 192 and 6 × 10−4 at 10 kHz, respectively. The tunability is 10% at a dc bias field of 0.9 MV/cm.  相似文献   

2.
The Bi2O3-ZnO-Nb2O5 (BZN) cubic pyrochlore thin films were prepared on Pt/TiO2/SiO2/Si(1 0 0) substrates by using pulsed laser deposition process. The oxygen pressure was varied in the range of 5-50 Pa to investigate its effect on the structure and dielectric properties of BZN thin films. It is found that oxygen pressure during deposition plays an important role on structure and other properties of BZN films. The BZN films deposited at temperature of 650 °C and at O2 pressure of 5 Pa have an amorphous BZN and Nb2O5 phases but exhibits a cubic pyrochlore structure with a preferential (2 2 2) orientation when the oxygen pressure increases to 10 Pa. Dielectric constant and loss tangent of the films deposited at 10 Pa are 185 and 0.0008 at 10 kHz, respectively. The dielectric tunability is about 10% at a dc bias field of 0.9 MV/cm.  相似文献   

3.
Cubic bismuth pyrochlores in the $\mathrm{Bi}_{2}\mathrm{O}_{3}$ –MgO– $\mathrm{Nb}_{2}\mathrm{O}_{5}$ system have been investigated as promising dielectric materials due to their high dielectric constant and low dielectric loss. Here, we report on the dielectric properties and microstructures of cubic pyrochlored $\mathrm{Bi}_{1.5}\mathrm{MgNb}_{1.5}\mathrm{O}_{7}$ (BMN) ceramic samples synthesized via solid-state reactions. The dielectric constant (measured at 1 MHz) was measured to be ${\sim}120$ at room temperature, and the dielectric loss was as low as 0.001. X-ray diffraction patterns demonstrated that the BMN samples had a cubic pyrochlored structure, which was also confirmed by selected area electron diffraction (SAED) patterns. Raman spectrum revealed more than six vibrational models predicted for the ideal pyrochlore structure, indicating additional atomic displacements of the A and $\mathrm{O}'$ sites from the ideal atomic positions in the BMN samples. Structural modulations of the pyrochlore structure along the [110] and [121] directions were observed in SAED patterns and high-resolution transmission electron microscopy (HR-TEM) images. In addition, HR-TEM images also revealed that the grain boundaries (GBs) in the BMN samples were much clean, and no segregation or impure phase was observed forming at GBs. The high dielectric constants in the BMN samples were ascribed to the long-range ordered pyrochlore structures since the electric dipoles formed at the superstructural direction could be enhanced. The low dielectric loss was attributed to the existence of noncontaminated GBs in the BMN ceramics.  相似文献   

4.
The preparation, microstructure development and dielectric properties of Bi1.5ZnNb1.5O7 pyrochlore ceramics by metallo-organic decomposition (MOD) route are reported. Homogeneous precalcined ceramic powders of 13-36 nm crystallite size were obtained at temperatures ranging from 500 to 700 °C. The thermal decomposition/oxidation of the gelled precursor solution was chemically analyzed, TG/DTA, XRD, and SEM, led to the formation of a pure cubic pyrochlore phase with a stoichiometry close to Bi1.5ZnNb1.5O7 which begins to form at 500 °C. The metallo-organic precursor synthesis method, where Bi, Zn and Nb ions are chelated to form metal complexes, allows the control of Bi/Zn/Nb stoichiometric ratio on a molecular scale leading to the rapid formation of bismuth zinc niobate (Bi1.5ZnNb1.5O7) ceramic fine powders with pure pyrochlore structure. The powders were pressed into pellets and can be sintered at temperatures as low as 800-1000 °C. Fine crystalline ceramics with the grain size in the range of 200-500 nm have been obtained at the sintering temperature of 800 °C. The dielectric properties in high frequency to microwave range were measured and discussed.  相似文献   

5.
6.
Reactively rf-sputtered Bi2O3-ZnO-Nb2O5 (BZN) thin films were prepared on Pt(111)/TiO2/SiO2/Si with substrate heating. The effects of substrate heating on the structures, morphologies, dielectric properties, and voltage-tunable dielectric properties of the films were investigated. With heating, the BZN thin films could be deposited in crystalline form as the cubic pyrochlore phase. The amounts of secondary phases, such as zinc niobate and bismuth niobate, depended on the substrate temperature. The more compounding of the BZN crystalline phase proceeded at deposition, the less formation of secondary phases and stoichiometric change occurred after post-annealing. Therefore, improvement of the dielectric constant and tunability of thin films by grain-size enlargement might be possible with proper substrate heating and post-annealing. The BZN thin films sputtered with a substrate temperature of 550 °C and annealed at 800 °C showed a maximum tunability of 26.5% at a dc bias field of 1000 kV/cm and measurement frequency of 1 MHz. PACS 81.15.Cd; 77.55.+f; 77.84.Dy; 81.40.Tv  相似文献   

7.
Bi1.5Zn1.0Nb1.5O7/Ba0.6Sr0.4TiO3/Bi1.5Zn1.0Nb1.5O7 tunable multilayer thin film has been fabricated by pulsed laser ablation and characterized. Phase composition and microstructure of multilayer films were characterized by X-ray diffraction, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The film has very smooth surface with RMS roughness of 1.5-2 nm and grain size of 100-150 nm. Total film thickness has been measure to be 375 nm. The BZN thin films at 300 K, on Pt(1 1 1)/SiO2/Si substrate showed zero-field dielectric constant of 105 and dielectric loss tangent of 0.002 at frequency of 0.1 MHz. Thin films annealed at 700 °C shows the dielectric tunability of 18% with biasing field 500 kV/cm at 0.1 MHz. The multilayer thin film shows nonferroelectric behavior at room temperature. The good physical and electrical properties of multilayer thin films make them promising candidate for tunable microwave device applications.  相似文献   

8.
张奇伟  翟继卫  岳振星 《物理学报》2013,62(23):237702-237702
采用传统的固相反应烧结方法制 备BaxSr1-xTiO3(0.40≤ x ≤0.70)陶瓷,借助于Raman散射光谱,研究了陶瓷样品在不同原位电场作用下Raman振动模式的变化,观察到居里温度附近显著的电场诱导的四方–立方相之间的转变. 结果表明A1(TO3)和E(TO4)两种振动模式与晶体的结构存在密切的联系,这两种模式源于O-Ti-O沿晶格中c轴的方向和ab面内的振动. A1(TO3)/E(TO4)之间Raman峰的相对强度比,随外加场强的增加明显升高,顺电相逐渐转变为铁电相,晶格的畸变越来越明显,其宏观性能上表现为介电常数的降低,可调率的增加. 同时对居里温度附近电场诱导的结构相变对顺电相下介电非线性的贡献进行了探讨. 关键词: 钛酸锶钡 Raman散射光谱 结构相变  相似文献   

9.
铁电薄膜的介电常数随外加电场强度的增加而减小.依据铁电薄膜的这一特性,提出了一种新颖的基于共面传输线结构的铁电薄膜可调带通滤波器.为了减小传输损耗,滤波器的导体部分由超导薄膜构成.滤波器的输入输出采用抽头线的方式分别与谐振器相接,外加电压通过输入输出端口直接施加到共面谐振器缝隙处的铁电薄膜上,用以改变铁电薄膜的介电常数,从而改变谐振器的谐振频率,实现带通滤波器通带频率的移动.这种新型可调带通滤波器具有结构紧凑、尺寸小及施加外加偏压容易等优点.仿真结果表明:铁电薄膜的介电常数在外加偏压下从250减小到150时,带通滤波器的传输特性曲线的形状基本保持不变,通带的中心频率从10.283GHz增加到10.518GHz,其3dB带宽保持在0.150GHz左右,反射损耗始终小于-17dB.  相似文献   

10.
沈杰  魏宾  周静  Shen Shirley Zhiqi  薛广杰  刘韩星  陈文 《物理学报》2015,64(21):217801-217801
Ba(Mg1/3Nb2/3)O3 (BMN)复合钙钛矿陶瓷具有高介电常数和高品质因子等介电性能, 预示了其在光学领域的应用前景. 本文采用第一性原理方法计算了BMN的电子结构, 对其本征光学性能进行分析和预测. 对固相合成六方相BMN的XRD 测试结果进行Rietveld精修(加权方差因子Rwp=6.73%, 方差因子Rp=5.05%), 在此基础上建立晶体结构模型并对其进行几何优化. 运用基于密度泛函理论(DFT)的平面波赝势方法, 对六方相BMN晶体模型的能带、态密度和光学性质进行理论计算. 结果表明BMN的能带结构为间接带隙, 禁带宽度Eg=2.728 eV. Mg-O和Ba-O以离子键结合为主, Nb-O以共价键结合为主, 费米面附近的能带主要由O-2p和Nb-4d 态电子占据, 形成了d-p轨道杂化. 修正带隙后, 计算了BMN沿[100]和[001]方向上的复介电函数、吸收系数和反射率等光学性质. 结果表明, BMN近乎光学各向同性, 在可见光区, 其本征透过率为77%< T <83%, 折射率为1.91< n <2.14, 并伴随一定的色散现象. 实验测试结果与理论计算结果相吻合.  相似文献   

11.
Ferroelectric (Ba0.6Sr0.4)TiO3 (BST) thin films have been deposited by pulsed laser deposition onto single-crystal Y3Fe5O12 (YIG) substrates with/without a MgO buffer layer. The structure and microwave properties of the BST films have been investigated as a function of substrate orientation and O2 deposition pressures (50-800 mTorr). The crystallographic orientation of BST film varies with the deposition conditions. The dielectric properties of the ferroelectric were measured using interdigitated capacitors deposited on top of the BST film. BST films exhibit high tunability (20-40%) and high dielectric Q=1/cos' (30-50) with a dc bias field of 67 kV/cm at 10 GHz. A coplanar waveguide transmission line was fabricated from a (001)-oriented BST film on (111)YIG which exhibited a 17° differential phase shift with an applied dc bias field of 21 kV/cm (10 GHz). An equivalent differential phase shift was achieved with a magnetic field of 160 Gauss.  相似文献   

12.
《Current Applied Physics》2020,20(6):751-754
Excellent dielectric frequency, bias, and temperature stability of bismuth silicate (Bi2SiO5, BSO) thin films with a low dielectric loss has been obtained in this study. The thin films were prepared on Pt/Ti/SiO2/Si substrates by a chemical solution deposition method at a relatively low annealing temperature of 500 °C. The BSO films have a preferred growth along (200) orientation with dense fine-grained surface morphology. The dielectric constant and dielectric loss of the thin film annealed at 500 °C are 57 and 0.01, respectively, at 100 kHz, with little change between 1 kHz and 100 kHz and in the bias electric field range between −250 kV/cm and 250 kV/cm, indicating that the thin film exhibits a low dielectric loss as well as excellent frequency and bias field stability. The dielectric-temperature measurements confirmed that the BSO thin film annealed at 500 °C also has good temperature stability between 150 K and 450 K. Our results suggest that the BSO thin films have potential applications in the next-generation integrated capacitors.  相似文献   

13.
Barium strontium titanate (BST) thin films were prepared by RF magnetron sputtering. The dielectric constant-voltage curves and the hysteresis loops of BST thin films with different grain sizes and film thicknesses were investigated. When the grain size increases from 12 nm to 35 nm, remarkable increases in dielectric constant and tunability were observed. Above 12 nm, the BST films exhibited size effects, i.e. a decrease in maximal polarization (Pm) and an increase in coercive electric field (Ec) with reduction in grain size. In our investigation, the dielectric constant, tunability and maximal polarization increased as the film thickness increased. Furthermore, the size dependence of the dielectric constant and tunability of Ba0.6Sr0.4TiO3 thin films is determined by that of the maximal polarization and the coercive electric field.  相似文献   

14.
Barium tin titanate Ba(Sn0.15Ti0.85)O3 (BTS) thin films with (1 0 0), (1 1 0) and (1 1 1) orientation were grown on (1 0 0), (1 1 0) and (1 1 1) LaAlO3 (LAO) single-crystal substrates through sol–gel process, respectively. The in-plane dielectric properties of the films were measured on interdigital capacitor (IDC). Films with the (1 1 1) orientation had larger relative dielectric constant and larger tunability against the dc bias electric field than (1 0 0)- and (1 1 0)-oriented films. This difference in dielectric properties in these three kinds of oriented BTS films may be attributed due to change in the direction and magnitude of electric polarization in orientation engineered BTS films. This work clearly reveals the dielectric properties of BTS films exhibited a strong sensitivity to crystal orientation.  相似文献   

15.
Bismuth Zinc niobate (Bi1.5Zn1.0Nb1.5O7) thin films were deposited by pulsed laser deposition (PLD) method on fused silica substrates at different oxygen pressures. The structural, microwave dielectric and optical properties of these thin films were systematically studied for both the as-deposited and the annealed films at 600°C. The as-deposited films were all amorphous in nature but crystallized on annealing at 600°C in air. The surface morphology as studied by atomic force microscopy (AFM) reveals ultra-fine grains in the case of as-deposited thin films and cluster grain morphology on annealing. The as-deposited films exhibit refractive index in the range of 2.36–2.53 (at a wavelength of 750 nm) with an optical absorption edge value of 3.30–3.52 eV and a maximum dielectric constant of 11 at 12.15 GHz. On annealing the films at 600°C they crystallize to the cubic pyrochlore structure accompanied by an increase in band gap, refractive index and microwave dielectric constant.  相似文献   

16.
高调谐BST薄膜制备及介电性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
俞健  廖家轩  金龙  魏雄邦  汪澎  尉旭波  徐自强 《物理学报》2011,60(7):77701-077701
用改进的溶胶凝胶(sol-gel)法逐层制备钛酸锶钡(Ba0.6Sr0.4TiO3, BST)薄膜,研究中间热处理(preheating,PT)对薄膜结构及介电性能的影响.X射线衍射(XRD)表明,BST薄膜主要沿(110)方向生长,对应立方钙钛矿结构,PT使晶化增强.X射线光电子能谱(XPS)表明,PT促使表面非钙钛矿结构向钙钛矿结构转变.原子力显微镜(AFM)和介电性能测试表明,随着PT频次的增加,薄膜形貌改善,表面粗糙度降低,介电调谐 关键词: 中间热处理 高调谐 溶胶凝胶法 钛酸锶钡  相似文献   

17.
New ferroelectric Pb(Zr,Ti)O3-Pb(Mn,W,Sb,Nb)O3 (PZT-PMWSN) thin film has been deposited on a Pt/Ti/SiO2/Si substrate by pulsed laser deposition. Buffer layer was adopted between film and substrate to improve the ferroelectric properties of PZT-PMWSN films. Effect of a Pb(Zr0.52Ti0.48)O3 (PZT) and (Pb0.72La0.28)Ti0.93O3 (PLT) buffer layers on the stabilization of perovskite phase and the suppression of pyrochlore phase has been examined. Role of buffer layers was investigated depending on different types of buffer layer and thickness. The PZT-PMWSN thin films with buffer layer have higher remnant polarization and switching polarization values by suppressing pyrochlore phase formation. The remnant polarization, saturation polarization, coercive field and relative dielectric constant of 10-nm-thick PLT buffered PZT-PMWSN thin film with no pyrochlore phase were observed to be about 18.523 μC/cm2, 47.538 μC/cm2, 63.901 kV/cm and 854, respectively.  相似文献   

18.
(100) Oriented (PbxSr1−x)TiO3 (PST) thin films were prepared on indium tin oxide coated glass substrates by sol–gel technique with rapid thermal processing. The dielectric permittivity and tunability of the thin films with different dispersion degrees of orientation were investigated in detail by characterizing the full width at half maximum of their (100) peak based on rocking curves at different annealing temperatures. Influence of orientation dispersion on dielectric properties was exhibited in the tunable dielectric thin films. It shows that the dielectric constant and hence the tunability of the sol–gel derived PST thin films are improved with the decrease in the dispersion degree of orientation of the perovskite phase other than the increase in the content of crystalline phase in the thin films. The dielectric constant (capacitance) and figure of merit of the oriented thin films are 3–6 times and 1 times higher than that of randomly oriented thin film respectively.  相似文献   

19.
A phenomenological Landau–Devonshire theory is developed to investigate the ferroelectric, dielectric, and piezoelectric properties of(110) oriented Pb(Zr_(1-x)Ti_x)O_3(x = 0.4, 0.5, 0.6, and 0.7) thin films. At room temperature, the tetragonal a_1 phase, the orthorhombic a_2c phase, the triclinic γ_1 phase, and the triclinic γ_2 phase are stable. The appearance of the negative polarization component P_2 in the a_2c phase and the γ_1 phase is attributed to the nonlinear coupling terms in the thermodynamic potential. The γ phase of the Pb(Zr_(1-x)Ti_x)O_3 thin films has better dielectric and piezoelectric properties than the a_2c phase and the a_1 phase. The largest dielectric and piezoelectric coefficients are obtained in the Pb(Zr_(0.5)Ti_(0.5))O_3 thin film. The piezoelectric coefficient of 110–150 pm/V is obtained in the(110) oriented Pb(Zr_(0.5)Ti_(0.5))O_3 thin film, and the Pb(Zr_(0.3)Ti_(0.7))O_3 thin film has the remnant polarization and relative dielectric constant of 50 μC/cm~2 and 100, respectively,which are in agreement with the experimental measurements reported in the literature.  相似文献   

20.
The thickness-dependent dielectric properties and tunability of pulsed laser deposited (Ba0.5Sr0.5)0.925K0.075TiO3 (BSKT) thin films with different thickness ranging from 80 to 300 nm has been investigated. Dielectric properties of the BSKT thin films are substantially improved as the BSKT film thickness increases, which can be explained by the model of a low-permittivity dead layer that is connected in series with the bulk region of the film. The estimated values of thickness and the average dielectric constant for the dead layer are 2.4 nm and 23.5, respectively, in a Pt/BSKT/Pt capacitor structure. The tunability and figure of merit increased with increasing film thickness, which are attributed to the change in lattice parameter and the dead layer effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号