共查询到20条相似文献,搜索用时 98 毫秒
1.
2.
Ebrahim Paimozd Ali Ghasemi Abdolhamid Jafari Hassan Sheikh 《Journal of magnetism and magnetic materials》2008
BaFe12O19 powders with nanocrystalline size were prepared by sol–gel techniques. Nitric, hydrochloric, acetic and stearic acid were used to improve the magnetic properties. Amorphous gels were formed with Fe/Ba molar ratio of 10.5. Then powders were obtained by subsequent heat treatment at 800–1000 °C for 1 h. Barium ferrite powder was also synthesized by solid state reaction at 1210 °C. X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM) experiments were conducted to evaluate structural properties of the samples. The value of the effective magnetic susceptibility was measured. The results show that the magnetoplumbite structure was formed in all of the powders. The TEM observation showed that the minimum particle size (20 nm) was produced with the stearic acid catalyst. The highest value of the effective magnetic susceptibility was achieved also using stearic acid. 相似文献
3.
Spinel cobalt ferrite, CoFe2−xMxO4 has been synthesized by substitution of the combination of metallic elements M=Zr–Mg by the microemulsion method using polyethylene glycol as a surfactant. Powder X-ray diffraction analysis reveals that the substitution results in shrinkage of the unit cell of cobalt ferrite due to higher binding energy of the synthesized samples. The energy-dispersive X-ray fluorescence analysis confirms the stoichiometric ratios of the elements present. The thermogravimetric analysis shows that the minimum temperature required for the synthesis of these substituted compounds is 700 °C. A two-point probe method was employed for the measurement of the electrical resistivity in a temperature range of 293±5 to 673±5 K. It appears that there is a decrease in the number of Fe2+/Fe3+ pairs at the octahedral sites due to the substitution and corresponding migration of some of the Fe3+ ions to tetrahedral sites, consequently increasing the resistivity and the activation energy of hopping of electron at the octahedral sites. The susceptibility data also suggest migration of Fe3+ to tetrahedral site in the initial stage, which results in an increase in A–B interactions leading to large increase in the blocking temperature (TB) as observed in samples having dopant content x=0.1. 相似文献
4.
Shixi Zhao Qiang Li Yuchuan Feng Cewen Nan 《Journal of Physics and Chemistry of Solids》2009,70(3-4):639-644
The sintering characteristic and dielectric properties of 0.67PMN–0.33PT ceramics prepared by the molten salt synthesis (MSS) method were investigated. PMN–PT particles synthesized by MSS with smaller grain size and good dispersion could lower the sintering temperature of ceramics; PMN–PT ceramics with relative density above 96% could be obtained in the range 1150–1180 °C. The molten salts species could significantly affect the microstructure and properties of MPN-PT ceramics. In the range 1100–1200 °C, PMN–PT ceramics from the sulfate flux MSS powders showed intergranular fracture, but that from the chloride flux MSS powder showed transgranular fracture. At the same sintering condition, the properties of PMN–PT ceramics from the powders prepared in the chloride flux are better than that from the powders prepared in the sulfate flux, their maximum dielectric constant εmax≈29,385 and piezoelectric constant d33≈660 pC/N. The above results demonstrated that PMN–PT ceramics prepared by the molten salts method possessed excellent piezoelectric and dielectric properties. 相似文献
5.
Fe100???x Ni x samples with x?=?22.5, 30.0 and 40.0 at.% Ni were prepared by mechanical alloying (MA) with milling times of 10, 24, 48 and 72 h, a ball mass to powder mass (BM/PM) ratio of 20:1 and rotation velocity of 280 rev/min. Then the samples were sintered at 1,000°C and characterized by X-ray diffraction (XRD) and transmission Mössbauer spectrometry (TMS). From the refinement of the X ray patterns we found in this composition range two crystalline phases, one body centered cubic (BCC), one face centered cubic (FCC) and some samples show FeO and Fe3O4 phases. The obtained grain size of the samples shows their nanostructured character. Mössbauer spectra were fitted using a model with two hyperfine magnetic field distributions (HMFDs), and a narrow singlet. One hyperfine field distribution corresponds to the ferromagnetic BCC grains, the other to the ferromagnetic FCC grains (Taenite), and the narrow singlet to the paramagnetic FCC grains (antitaenite). Some samples shows a paramagnetic doublet which corresponds to FeO and two sextets corresponding to the ferrimagnetic Fe3O4 phase. In this fit model we used a texture correction in order to take into account the interaction between the particles with flake shape and the Mössbauer $\upgamma$ -rays. 相似文献
6.
Nano-crystalline nickel–zinc ferrites of different compositions; Ni1−xZnxFe2O4 (x=0.0–1.0) were prepared by a precursor method involving egg-white and metal nitrates. An appropriate mechanism for the egg-white-metal complexation was suggested. Differential thermal analysis-thermogravimetry, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer and AC-magnetic susceptibility measurements were carried out to investigate chemical, structural and magnetic aspects of Ni–Zn ferrites. XRD confirmed the formation of spinel cubic structure. The average crystallite size was calculated using line broadening in XRD patterns. Structural parameters like lattice constant, X-ray density, bond lengths and inter-cationic distance were determined from XRD data. TEM showed agglomerated particles with average size agreed well with that estimated using XRD. FT-IR spectra confirm the formation of spinel structure and further lends support to the proposed cation distribution. Zn-content was found to have a significant influence on the magnetic properties of the system. The changes in the magnetic properties can be attributed to the influence of the cationic stoichiometry and their occupancy in the specific sites. 相似文献
7.
(Ni0.25Cu0.20Zn0.55)LaxFe2−xO4 ferrite with x=0.00, 0.025, 0.050 and 0.075 compositions were synthesized through nitrate–citrate auto-combustion method. Crystalline spinel ferrite phase with about 16–19 nm crystallite size was present in the as-burnt ferrite powder. These powders were calcined, compacted and sintered at 950 °C for 4 h. Initial permeability, magnetic loss and AC resistivity of different compositions were measured in the frequency range from 10 Hz to 10 MHz. Saturation magnetization and hysteresis parameters were measured at room temperature with a maximum magnetic field of 10 kOe. Permeability and AC resistivity were found to increase and magnetic loss decreased with La substitution for Fe, up to x=0.025. Saturation magnetization and coercive field also increases up to that limit. The electromagnetic properties were found best in the ferrite composition of x=0.025, which would be better for more miniaturized multi layer chip inductor. 相似文献
8.
Microstructure and magnetic characteristics of nanocrystalline Ni0.5Zn0.5 ferrite synthesized by a spraying-coprecipitation method 下载免费PDF全文
Nanocrystalline Ni0.5Zn0.5 ferrite with average grain sizes ranging from 10 to 100 nm is prepared by using a spraying-coprecipitation method. The results indicate that the nanocrystalline Ni0.5Zn0.5 ferrite is ferromagnetic without the superparamagnetic phenomenon observed at room temperature. Specific saturation magnetization of nanocrystalline Nio.sZno.5 ferrite increases from 40.2 to 75.6 emu/g as grain size increases from 11 to 94nm. Coercivity of nanocrystalline Ni0.5Zn0.5 ferrite increases monotonically when d 〈 62 nm.The relationship between the coercivity and the mean grain size is well fitted into a relation Hc - d^3. A theoretically evaluated value of the critical grain size is 141nm larger than the experimental value 62nm for nanocrystalline Ni0.5Zn0.5 ferrite. The magnetic behaviour of nanocrystalline Ni0.5Zn0.5 ferrite may be explained by using the random anisotropy theory. 相似文献
9.
Kh. Gheisari S. JavadpourH. Shokrollahi B. Hashemi 《Journal of magnetism and magnetic materials》2008
Ferromagnetic powders which are surrounded by an electrically insulating film (soft magnetic composites (SMCs)) exhibit unique magnetic properties, such as relatively low magnetic losses and 3D isotropic magnetic behavior. In some electromagnetic applications, including microwave frequency range applications, it is necessary to increase electrical resistivity without any noticeable reduction in magnetic properties. To achieve this purpose, electrically resistant materials, for example, ferrites with acceptable magnetic properties, are suitable candidates. This paper focuses on the effects of the synthesized Ni–Zn ferrite addition on the magnetic properties of the SMCs containing Ni–Zn ferrite within iron particles. The structure was studied by means of X-ray diffraction (XRD). The microstructure and the powder morphology were examined by the use of scanning electron microscopy (SEM). The magnetic measurements on powders and samples were carried out using a vibrating sample magnetometer (VSM) and an LCR meter, respectively. The results indicate that the lowest magnetic loss and the highest magnetic permeability are related to the composites with 20 wt% ferrite and 2 wt% ferrite, respectively. Also, the composites with 10 wt% ferrite show a good combination of magnetic loss and magnetic permeability in the range 0–500 kHz. 相似文献
10.
In this paper, the effect of nanostructures on the magnetic properties like the specific saturation magnetization (σS) and the coercivity (HC) for Mn0.4Zn0.6Fe2O4 ferrite prepared by the co-precipitation method has been presented. We have shown by means of X-ray diffraction that the resulting ferrite is made up of nanoparticles, and that the average size of these nanoparticles calculated with the Scherrer formula depends upon the sintering temperature. When the sintering temperature is increased from 500 to 900 °C, the average nanoparticle diameter varies from 19.3 to 36.4 nm. The nanoparticle phase is further confirmed by scanning electron microscopy (SEM). Both results are found to be in good agreement. The magnetic properties are explained on the basis of the single-domain and multi-domain theory. 相似文献
11.
Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives 下载免费PDF全文
With a series of 1.0 wt%Bi$_{2}$O$_{3}$-$x$ wt% CuO ($x =0.0$, 0.2, 0.4, 0.6, and 0.8) serving as sintering additives, Ni$_{0.23}$Cu$_{0.32}$Zn$_{0.45}$Fe$_{2}$O$_{4}$ ferrites are successfully synthesized at a low temperature (900 $^\circ$C) by using the solid state reaction method. The effects of the additives on the phase formation, magnetic and dielectric properties as well as the structural and gyromagnetic properties are investigated. The x-ray diffraction (XRD) results indicate that the added Bi$_{2}$O$_{3}$-CuO can lower the synthesis temperature significantly without the appearing of the second phase. The scanning electron microscope (SEM) images confirm that Bi$_{2}$O$_{3}$ is an important factor that determines the sintering behaviors, while CuO affects the grain size and densification. With CuO content $x=0.4$ or 0.6, the sample shows high saturation magnetization, low coercivity, high real part of magnetic permeability, dielectric permittivity, and small ferromagnetic resonance linewidth ($\Delta H$). The NiCuZn ferrites are a promising new generation of high-performance microwave devices, such as phase shifters and isolators. 相似文献
12.
The structural and magnetic powders prepared by properties of barium ferrite the sol-gel method 下载免费PDF全文
In this paper,M-type hexagonal barium ferrite powders are synthesized using the sol-gel method.A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 C using thermo-gravimetric analysis and differential scanning calorimetry.The effects of the additives and the cacinating temperature on the magnetic properties are investigated,and the results show that single-phase barium ferrite powders can be formed.After heat-treating at 950 C for 4h with 3 wt% additive,the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g,respectively. 相似文献
13.
Zhijian Peng Xiuli Fu Huilin GeZhiqiang Fu Chengbiao WangLonghao Qi Hezhuo Miao 《Journal of magnetism and magnetic materials》2011,323(20):2513-2518
Pr3+-doped Ni-Zn ferrites with a nominal composition of Ni0.5Zn0.5PrxFe2−xO4 (where x=0-0.08) were prepared by a one-step synthesis. The magnetic and dielectric properties of the as-prepared Ni-Zn ferrites were investigated. X-ray diffraction data indicated that, after doping, all samples consisted of the main spinel phase in combination of a small amount of a foreign PrFeO3 phase. The lattice constants of the ferrites initially increased after Pr3+ doping, but then became smaller with additional Pr3+ doping. The addition of Pr3+ resulted in a reduction of grain size and an increase of density and densification of the as-prepared samples. Magnetic measurement revealed that the saturation magnetization of the as-prepared ferrites, Ms, decreased, while the coercivity, Hc, increased with increasing substitution level, x, and the Curie temperature, Tc, kept a rather high value, fluctuating between 308 and 320 °C. Both the real and imaginary parts of permeability of the ferrites decreased slightly after Pr3+ doping. However, the natural resonance frequency shifted towards higher frequency from 13.07 to 36.17 MHz after the addition of Pr3+, driving the magnetic permeability to much higher frequency, reaching the highest value (36.17 MHz) when x=0.04. Introduction of Pr3+ ions into the Ni-Zn ferrite reduced the values of the dielectric loss tangent, especially in the frequency range of 1-400 MHz. However, the magnitude of dielectric loss of the samples doped with different amounts of Pr3+ raised little. 相似文献
14.
采用静电纺丝法合成了纤维状的Bi2Fe4O9前驱体,再对前驱体进行热处理得到了棒状的Bi2Fe4O9.通过X射线衍射、扫描电子显微镜及透射电子显微镜表征了合成样品的物相及形貌特征.结果表明合成的样品为Bi2Fe4O9单相,属于正交晶系;退火处理导致纤维状的前驱体转变为棒状的Bi2Fe4O9.紫外-可见吸收光谱表明制备的Bi2Fe4O9对光的吸收范围广,不仅对紫外光具有较强吸收,而且对可见光也有一定的吸收.通过振动样品磁强计测定Bi2Fe4O9磁滞回线研究其磁学特性,相应的矫顽力HC≈82 Oe(1 Oe=79.5775 A/m),剥离顺磁信号后的剩磁Mr≈0.25 emu/g,研究发现Bi2Fe4O9样品具有弱铁磁性,并且软磁性能有所提高. 相似文献
15.
采用溶胶-凝胶法,在氧气氛中和层层晶化的工艺条件下,成功地制备了沉积在Pt/Ti/SiO2/Si(100)衬底上的铁电性能优良的Sr2Bi4Ti5O18(SBTi)薄膜,并研究了SBTi薄膜的微结构、表面形貌、铁电性能和疲劳特性.研究表明:薄膜具有单一的层状钙钛矿结构,且为随机取向;薄膜表面光滑,无裂纹,厚度约为725nm;铁电性能测试显示较饱和、方形的电滞回线,当外电场强度为275kV/cm时,其剩余极化2Pr和矫顽场2Ec分别为24.0μC/cm2和137.8kV/cm;疲劳测试发现薄膜经过4.4×1010次极化反转后,基本没有显示疲劳. 相似文献
16.
We investigate the magnetic properties of Co-doped Cu_2O. We studied first the electronic and structural properties of Cu_2O using the optimization of the lattice constant which is 4.18 . The calculated gap is found between 0.825 eV and1.5 eV, these values are in good agreement with the experimental results. The Co atoms are inserted in Cu_2O by means of the density functional theory(DFT) using LSDA, LSDA +U, and LSDA + MBJ approximations in the WIEN2 k code, based on the supercell model by setting up 12, 24, and 48 atoms in(1×1 × 2),(1 × 2 × 2), and(2 × 2×2) supercells respectively with one or two copper atoms being replaced by cobalt atoms. The energy difference between the ferromagnetic and antiferromagnetic coupling of the spins located on the substitute Co has been calculated in order to obtain better insight into the magnetic exchange coupling for this particular compound. The studied compound exhibits stable integer magnetic moments of 2 μBand 4 μBwhen it is doped with 2 atoms of Co. Optical properties have also been worked out. The results obtained in this study demonstrate the importance of the magnetic effect in Cu_2O. 相似文献
17.
Yue Zhang Zhi Yang Yong Liu Rui Xiong Jing Shi GaoLin Yan 《Journal of magnetism and magnetic materials》2010,322(21):3470-3475
Cobalt ferrite nano-particles were prepared using the co-precipitation method followed by annealing treatment. The formation of nano-particles with different composition, microstructure and sizes were confirmed by X-ray diffraction, Raman, thermogravimetric-differential thermal analysis and transmission electron microscope. The magnetic hysteresis loops measured at room temperature revealed smaller effective magnetic anisotropy constant, coercivity and remanence ratio for the samples prepared by adding the NaOH solutions into the mixed solutions of Co2+ and Fe3+ ions due to the formation of Co3+ ions. A small saturation magnetization and an enhanced coercivity were observed for the nano-particles prepared by adding the mixed solutions of Co2+ and Fe3+ ions into the NaOH solutions, which was related to the formation of outer layers with poor crystallization on the surfaces of the cobalt ferrite nano-crystals. Furthermore, the existence of these outer layers induced the oxidation of Co2+ ions in cobalt ferrite nano-crystals at 200 and 300 °C, and led to a large change on the composition and magnetic properties. 相似文献
18.
Bismuth-containing semiconductor material is a hot topic in photocatalysts because of its effective absorption under the visible light. In this paper, we expect to explore a new bismuth-based photocatalyst by studying the subsolidus phase relations of the Bi2O3-Fe2O3-La2O3 system. The X-ray diffraction data shows that in this ternary system the ternary compound does not exist, while seven binary compounds (including one solid solution series Bi1-xLaxO1.5 with 0.167 〈 x 〈 0.339) are obtained and eight compatibility triangles are determined. 相似文献
19.
The structural and magnetic properties of barium ferrite powders prepared by the solben gel method 下载免费PDF全文
In this paper, M-type hexagonal barium ferrite powders are synthesized using the sol-gel method. A dried precursor heated in air is analyzed in the temperature range from 50 to 1200 ℃ using thermo-gravimetric analysis and differential scanning calorimetry. The effects of the additives and the cacinating temperature on the magnetic properties are investigated, and the results show that single-phase barium ferrite powders can be formed. After heat-treating at 950 ℃ for 4h with 3 wt% additive, the coercivity and saturation magnetization are found to be 440 Oe and 57.9 emu/g, respectively. 相似文献
20.
Sunil Rohilla Sushil KumarP. Aghamkar S. SunderA. Agarwal 《Journal of magnetism and magnetic materials》2011,323(7):897-902
Magnetic nanocomposites consisting of cobalt ferrite nanoparticles embedded in silica matrix were prepared by the coprecipitation method using metallic chlorides as precursors for ferrite. Subsequently composites were annealed at 100, 200 and 300 °C for 2 h. The samples were structurally characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The magnetic properties were measured in the temperature range of 10-300 K using vibrating sample magnetometer (VSM). The effects of thermal treatment on structural and magnetic properties of nanocomposites were investigated. When the samples were annealed, CoFe2O4 nanocrystallites were observed in the SiO2 matrix, whose size increases with increase in annealing temperature. The coercivity and saturation magnetization of nanocomposite (annealed at 300 °C for 2 h) are much higher than that of bulk cobalt ferrite. The realization of adjustable particle sizes and controllable magnetic properties makes the applicability of the CoFe2O4 nanocomposite more versatile. 相似文献