首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Abstract

In calculating the properties of waves scattered by random media it is almost always assumed that variations of the media constitute a joint Gaussian process. In this paper two alternative models are investigated. It is shown that whilst some features of the statistics of the scattered waves are more sensitive to the spectrum of the fluctuations in the medium than to the basic statistical model, in general significantly different properties are predicted using the alternative models.  相似文献   

4.
In calculating the properties of waves scattered by random media it is almost always assumed that variations of the media constitute a joint Gaussian process. In this paper two alternative models are investigated. It is shown that whilst some features of the statistics of the scattered waves are more sensitive to the spectrum of the fluctuations in the medium than to the basic statistical model, in general significantly different properties are predicted using the alternative models.  相似文献   

5.
We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.  相似文献   

6.
《Composite Interfaces》2013,20(1):93-107
Two interface models based on physical considerations are proposed to analyze the freeedge effects in unidirectional multilayered composites. The first model is a transition behavior law describing the graded properties of the interlayer between two adjacent layers. It is defined according to the stacking direction and based on a microscopic analysis of the fiber distribution in the vicinity of the interlayer. Used in a numerical simulation, this model gives accurate stress distributions in the laminate, including the interlaminar stresses at the free-edge that are not singular. The second model utilizes an interface law, defined on the material surface, resulting from the asymptotic resolution of an elastic problem pertaining to the interlayer and simulating a very thin flexible layer. This model also gives no singular free-edge interlaminar stresses close to those obtained with the first model.  相似文献   

7.
We consider a neural network of Stuart–Landau oscillators as an associative memory. This oscillator network with NN elements is a system of an NN-dimensional differential equation, works as an attractor neural network, and is expected to have no Lyapunov functions. Therefore, the technique of equilibrium statistical physics is not applicable to the study of this system in the thermodynamic limit. However, the simplicity of this system allows us to extend statistical neurodynamics [S. Amari, K. Maginu, Neural Netw. 1 (1988) 63–73], which was originally developed to analyse the discrete time evolution of the Hopfield model, into the version for continuous time evolution. We have developed and attempted to apply this method in the analysis of the phase transition of our model network.  相似文献   

8.
9.
Recent theoretical work on the modeling of network structure has focused primarily on networks that are static and unchanging, but many real-world networks change their structure over time. There exist natural generalizations to the dynamic case of many static network models, including the classic random graph, the configuration model, and the stochastic block model, where one assumes that the appearance and disappearance of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. Here we give an introduction to this class of models, showing for instance how one can compute their equilibrium properties. We also demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data using the method of maximum likelihood. This allows us, for example, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate these methods with a selection of applications, both to computer-generated test networks and real-world examples.  相似文献   

10.
Graphical models for statistical inference and data assimilation   总被引:1,自引:0,他引:1  
In data assimilation for a system which evolves in time, one combines past and current observations with a model of the dynamics of the system, in order to improve the simulation of the system as well as any future predictions about it. From a statistical point of view, this process can be regarded as estimating many random variables which are related both spatially and temporally: given observations of some of these variables, typically corresponding to times past, we require estimates of several others, typically corresponding to future times.

Graphical models have emerged as an effective formalism for assisting in these types of inference tasks, particularly for large numbers of random variables. Graphical models provide a means of representing dependency structure among the variables, and can provide both intuition and efficiency in estimation and other inference computations. We provide an overview and introduction to graphical models, and describe how they can be used to represent statistical dependency and how the resulting structure can be used to organize computation. The relation between statistical inference using graphical models and optimal sequential estimation algorithms such as Kalman filtering is discussed. We then give several additional examples of how graphical models can be applied to climate dynamics, specifically estimation using multi-resolution models of large-scale data sets such as satellite imagery, and learning hidden Markov models to capture rainfall patterns in space and time.  相似文献   


11.
12.
13.
This paper concerns a square lattice, Ising-type model with interactions between the four spins at the corners of each face. These may include nearest and next-nearest-neighbor interactions, and interactions with a magnetic field. Provided the Hamiltonian is symmetric with respect to both row reversal and column reversal, a rapidly convergent sequence of variational approximations is obtained, giving the free energy and other thermodynamic properties. For the usual Ising model, the lowest such approximations are those of Bethe and of Kramers and Wannier. The method provides a new definition of corner transfer matrices.  相似文献   

14.
We present an automated algorithm for inferring analytical models of closed reactive biochemical mixtures, on the basis of standard approaches borrowed from thermodynamics and kinetic theory of gases. As input, the method requires a number of steady states (i.e. an equilibria cloud in phase–space), and at least one time series of measurements for each species. Validations are discussed for both the Michaelis–Menten mechanism (four species, two conservation laws) and the mitogen-activated protein kinase–MAPK mechanism (eleven species, three conservation laws).  相似文献   

15.
16.
The results from ten statistical multifragmentation models have been compared with each other using selected experimental observables. Even though details in any single observable may differ, the general trends among models are similar. Thus, these models and similar ones are very good in providing important physics insights especially for general properties of the primary fragments and the multifragmentation process. Mean values and ratios of observables are also less sensitive to individual differences in the models. In addition to multifragmentation models, we have compared results from five commonly used evaporation codes. The fluctuations in isotope yield ratios are found to be a good indicator to evaluate the sequential decay implementation in the code. The systems and the observables studied here can be used as benchmarks for the development of statistical multifragmentation models and evaporation codes. An erratum to this article is available at .  相似文献   

17.
We propose a new way to build networks of defects. The idea takes advantage of the deformation procedure recently employed to describe defect structures, which we use to construct networks, spread from small rudimentary networks that appear in simple models of scalar fields.  相似文献   

18.
《Nuclear Physics B》2003,666(3):396-416
We develop a statistical mechanics approach for random networks with uncorrelated vertices. We construct equilibrium statistical ensembles of such networks and obtain their partition functions and main characteristics. We find simple dynamical construction procedures that produce equilibrium uncorrelated random graphs with an arbitrary degree distribution. In particular, we show that in equilibrium uncorrelated networks, fat-tailed degree distributions may exist only starting from some critical average number of connections of a vertex, in a phase with a condensate of edges.  相似文献   

19.
Inspecting the dynamics of networks opens a new dimension in understanding the interactions among the components of complex systems. Our goal is to understand the baseline properties expected from elementary random changes over time, in order to be able to assess the various effects found in longitudinal data. We created elementary dynamic models from classic random and preferential networks. Focusing on edge dynamics, we defined several processes for changing networks of a fixed size. We applied simple rules, including random, preferential and assortative modifications of existing edges – or a combination of these. Starting from initial Erdos-Rényi networks, we examined various basic network properties (e.g., density, clustering, average path length, number of components, degree distribution, etc.) of both snapshot and cumulative networks (for various lengths of aggregation time windows). Our results provide a baseline for changes to be expected in dynamic networks. We found universalities in the dynamic behavior of most network statistics. Furthermore, our findings suggest that certain network properties have a strong, non-trivial dependence on the length of the sampling window.  相似文献   

20.
The scaling properties of the free energy, specific heat, and mean spacing are calculated for classical Frenkel-Kontorova models at low temperature, in three regimes: near the integrable limit, the anti-integrable limit, and the sliding-pinned transition (transition by breaking of analyticity). In particular, the renormalization scheme given in previous work for ground states of Frenkel-Kontorova models is extended to nonzero-temperature Gibbs states, and the hierarchical melting phenomenon of Vallet, Schilling, and Aubry is put on a rigorous footing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号