首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
We report a novel approach to obtaining a classical blue-green excitable CaS:Eu2+ phosphor with desired red emission by microwave (MW) firing procedure in the absence of adding elemental sulphur. The disturbing effect of MW electro- magnetic field on decomposition of CaSO4 into CaS activated by europium is distinctly observed to give pure host phase without adding any elemental sulphur and carbon. The host phase evolution is observed to be highly dependent on the variation of applied MW power from X-ray diffraction (XRD) patterns and the corresponding photoluminescence (PL), and a maximum PL intensity at 1100 W of MW power is acquired for the obtained purer host phase. The non-thermal and non-equilibrium effects by MW are revealed to correlate with the interaction between polar structure of the host and applied electromagnetic field. The results demonstrate an optional procedure to prepare this red-emitting phosphor in an effective, environment-friendly and scalable approach for phosphor production in the application of bio-illumination for plant cultivation and artificial photosynthesis.  相似文献   

2.
霍凤萍  吴荣归  徐桂英  牛四通 《物理学报》2012,61(8):87202-087202
以Pb粉、Te粉、Ag粉、Ge粉为原材料,在真空气氛下合成(AgSbTe2)100-x-(GeTe)x (x=80---90) (TAGS)合金热电材料, X射线衍射(XRD)分析表明,热压烧结后合金具有低温菱形结构. 通过热压烧结法将TAGS粉末制备成块体材料,运用XRD和扫描电子显微镜对材料的物相成分、 晶体结构和形貌进行了表征.采用直流四探针法测定样品的电导率,当样品两端的温差为1---4℃ 的情况下测量Seebeck系数.通过材料热电性能测试,研究了30---500℃温度范围内不同组分 样品性能参数的变化.结果表明,所制备的TAGS热电材料具有纳米结构, 其性能随着组分的变化而变化, TAGS-80具有较好的热电性能,在530℃时具有最高热电优值(ZT=1.80).  相似文献   

3.
用高温熔融法制备了不同Ho3+离子掺杂浓度65GeO2-12B2O-10BaO-10Na2O-3Al2O3-χHo2O3(χ=0.25,0.75,1.25mol%)锗酸盐玻璃。从吸收特性出发,应用McCumber理论计算了Ho3+离子能级5I8→5I7(~2.0μm)跃迁的吸收截面和5I7→5I8的受激发射截面。根据掺杂离子的浓度以及获得的吸收截面和受激发射截面得到Ho3+离子在此玻璃中的增益截面函数,从该函数可反映出材料的粒子数反转特性。获得的基本光学参数与其它掺杂的玻璃进行了比较,其吸收截面、发射截面和增益截面的最大值具有一定的优势。认为该玻璃在~2.0μm波段的中红外激光器中将有潜在的较大应用前景。  相似文献   

4.
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence.  相似文献   

5.
Time resolved Fourier transform infrared emission has been used to study the photolysis of NO2 and its dimer N2O4 at 193 nm. NO(ν) populations from the photolysis of NO2 show a bimodal distribution, peaking at ν = 5 and with a subsidiary maximum at ν = 14, close to the energetically allowed limit. The results are discussed in terms of previous measurements near this photolysis wavelength of the kinetic energies of the two possible O atomic fragments, O(3P) and O(1D), and on the electronic states of the parent molecule which can be populated. The O(1D) yield has been measured as 0.51 ± 0.04, in good agreement with previously reported values. Emission from vibrationally excited NO2 arises from the dissociation of N2O4 and is similar to that observed from photolysis at 248 nm.  相似文献   

6.
Trivalent cerium-doped yttrium aluminum garnet(YAG:Ce3+) phosphors are synthesized by solid-state reaction method through using(Y1-xCex)2O3 solid solutions as precursors. Solid solubility limits of Ce3+replacing Y3+in Y2O3and YAG are determined to be 40% and 7.5%, respectively, based on the relationship between the lattice parameter and chemical composition. Using(Y1-xCex)2O3 as precursors we synthesize YAG:Ce3+single phase at 1450°C and N2atmosphere. However, under the same conditions using CeO2there exists a second phase YAlO3as impurity. The photoluminescence intensity of YAG:Ce3+increases monotonically with the increase of Ce concentration until it reaches a maximum at solid solubility limits of Ce3+in YAG.  相似文献   

7.
This paper describes the development and a detailed analysis carried out on the luminescence characteristics of Pr3+ doped ZrF4-BaF2-LaF3-YF3-AlF3-NaF glasses. In the present work our objectives are to elucidate the possible mechanisms that are responsible for NIR to red upconversion process and yellow to blue upconversion emission in terms of energy level schemes from the praseodymium containing fibre optical glass composition. We have studied their different physical and optical properties. Besides our investigation on the upconversion emission of these glasses, normal fluorescence studies have also been undertaken in explaining the mechanisms in demonstrating bright red and blue emissions upon excitations at visible and UV wavelengths. Besides these measurements works, a bright blue colour emission was observed under an UV source and upconverted prominent red emissions were observed with a laser diode (LD of ). Similarly under a yellow light source, a blue colour emission was observed from these praseodymium glasses studied.  相似文献   

8.
The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320-860 and 1750-3400 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the D216O molecule corresponding to transitions from highly excited rotational levels of the (0 2 0), (1 0 0), and (0 0 1) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax = 29 and Ka(max) = 22 for the (0 2 0) state, Jmax = 29 and Ka(max) = 25 for the (1 0 0) state, and Jmax = 30 and Ka(max) = 23 for the (0 0 1) state. The extended set of 1987 experimental rotational energy levels for the (0 2 0), (1 0 0), and (0 0 1) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm−1 for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.  相似文献   

9.
The far-infrared emission spectra of deuterated water vapour were measured at different temperatures (1370, 1520, and 1950 K) in the range 320-860 cm−1 at a resolution of 0.0055 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 1150 new measured lines for the D216O molecule corresponding to transitions between highly excited rotational levels of the (0 0 0) and (0 1 0) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax=26 and for the (0 0 0) ← (0 0 0) band, Jmax=25 and for the (0 1 0) ← (0 1 0) band, and Jmax=26 and for the (0 1 0) ← (0 0 0) band. The estimated accuracy of the measured line positions is 0.0005 cm−1. To our knowledge no experimentally measured rotational transitions for D216O within an excited vibrational state have been available in the literature so far. An extended set of experimental rotational energy levels for (0 0 0) and (0 1 0) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm−1 for 692 rotational levels of the (0 0 0) state and 0.0010 cm−1 for 639 rotational levels of the (0 1 0) vibrational state. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surface [J. Chem. Phys. 106 (1997) 4618] for the (0 0 0) and (0 1 0) states is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号