首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为研究细通道内气液段塞流的流体力学性质,对细通道内空气和水两相段塞流进行了数值模拟。以直径为1.6 mm的错流T型管为模型,使用计算流体力学(CFD)研究了气液流速、液相粘度和表面张力以及入口结构对段塞形成的影响,确定了气塞长度与两相流率、液相粘度和表面张力有关。气塞长度随分散相流率和表面张力的增大而增大,随连续相流率增大而减小;液相粘度在低液速时对段塞长度有较大的影响;确定了段塞形成的挤压和剪切关联式。  相似文献   

2.
3.
研究了1.2 MW大功率电子加速器引出窗钛膜受力状况,确定其工作温度必须控制在150 ℃以内。此温度下,热传导和热辐射的散热作用可以忽略,强迫风冷是唯一的散热途径。用流体模拟计算软件分析了钛膜冷却效果与出口风速和距离之间的关系,分析回流区的存在及其影响,并对引出窗结构做了初步优化。模拟了附加隔离窗形成的封闭空间对引出窗风冷的影响,模拟结果为:提出的非均布扫描方式可以将引出窗输出能力提升76%。  相似文献   

4.
The numerical simulation of the wavefronts diffracted by apertures with circular symmetry is realized by a numerical method. It is based on the angular spectrum of plane waves, which ignored the vector nature of light. The on-axial irradiance distributions of plane wavefront and Gauss wavefront diffracted by the circular aperture have been calculated along the propagation direction. Comparisons of the simulation results with the analytical results and the experimental results tell us that it is a feasible method to calculate the diffraction of apertures.  相似文献   

5.
6.
研究了常压空气中针-石蜡液面 50Hz 交流电晕放电离子风特性。交流电晕离子风能够引起液体石蜡 显著变形,随着电压升高,变形从漏斗状发展到盆状。在石蜡层厚度为 5mm 时,盆状变形最大,深度达到 5.3mm, 最大作用范围半径 18.8mm,变形产生的压强达到 48.9Pa,远远超过直流针-水电晕放电情况。随着电压升高,从 电晕放电过渡到流注放电时盆状变形依然存在,这一点明显不同于直流针-水电晕放电。研究表明交流电晕离子风 具有优良的驱动绝缘液体介质的巨大潜力。  相似文献   

7.
This paper presents a numerical investigation of transitional flow on the wind turbine airfoil DU91-W2-250 with chord-based Reynolds number Rec = 1.0 × 106. The Reynolds-averaged Navier–Stokes based transition model using laminar kinetic energy concept, namely the k ? kL ? ω model, is employed to resolve the boundary layer transition. Some ambiguities for this model are discussed and it is further implemented into OpenFOAM-2.1.1. The k ? kL ? ω model is first validated through the chosen wind turbine airfoil at the angle of attack (AoA) of 6.24° against wind tunnel measurement, where lift and drag coefficients, surface pressure distribution and transition location are compared. In order to reveal the transitional flow on the airfoil, the mean boundary layer profiles in three zones, namely the laminar, transitional and fully turbulent regimes, are investigated. Observation of flow at the transition location identifies the laminar separation bubble. The AoA effect on boundary layer transition over wind turbine airfoil is also studied. Increasing the AoA from ?3° to 10°, the laminar separation bubble moves upstream and reduces in size, which is in close agreement with wind tunnel measurement.  相似文献   

8.
In a circular cylinder with uniform flow, a sudden decrease in the drag force occurs at a high Reynolds numbers; however, it is known that the same phenomenon occurs at a lower Reynolds number in the case where there exist grooves or roughness on the circular cylinder surface. To clarify the flow characteristics around a circular cylinder in the case of changing the shape of grooves we analyzed the drag coefficient, lift coefficient, turbulent kinetic energy, vorticity and pressure by applying the RNGk-ε turbulent model. The shapes of the grooves were arced, triangulated and curved. The results showed that the separation point for a circular cylinder with curved sectional grooves shifts to the most downstream side and the drag coefficient becomes the smallest among circular cylinders with grooves.  相似文献   

9.
Quasisurface magnetostatic waves propagating in a ferrite film along two magnetized channels are simulated numerically. It is shown that the interaction between the channels is manifested differently, depending on the wavelength. In the long-wavelength region the interaction between the channels has a distributed character; in the short-wavelength region the interaction between the channels appears as if it takes place at their boundary. The magnetized region of the ferrite film between the channels behaves both as a conductor of the alternating field and as a medium with eigenmodes, so that under certain conditions the waveguide can be transformed into a three-channel structure. The dispersion curves of the magnetostatic wave modes of a two-channel waveguide lie in zones bounded by the dispersion curves of the corresponding modes of a one-channel waveguide of double width. As the gap between the channels increases, the dispersion curves of the odd modes shift toward shorter wavelengths, and those of the even modes shift toward longer wavelengths. Zh. Tekh. Fiz. 68, 91–96 (February 1998)  相似文献   

10.
The possibility of observing x-ray natural circular dichroism (XNCD) in enantiomorphous CsCuCl3 crystals has been considered. The spectra of XNCD in CsCuCl3 have been numerically simulated for the K, L1, L2, and L3 x-ray absorption edges of copper, cesium, and chlorine using FDMNES and LMTO programs. It has been shown that the largest value of dichroism signal can be expected near the copper and chlorine L1 edges.  相似文献   

11.
It is widely accepted that wind energy is clean and renewable. However, icing on the blade surfaces of wind turbines is a serious problem in cold regions, which greatly affects its performance. Therefore, it is important to prevent ice accumulation on the surface of wind turbine blade and remove it whenever necessary. In this paper, a new non-thermal method–ultrasonic de-icing for wind turbine blade is proposed. Firstly, baced on the theory of ultrasonic de-icing, the harmonic analysis of the structure of the composite plate-ice layered system is investigated using the finite element method. The simulation results showed that ultrasonic de-icing method is feasible for wind turbine blade de-icing purposes. Secondly, the de-icing experiment of wind turbine blades using piezoelectric actuators is carried out in the freezer at a temperature of −15 °C, results showed that the ice layer can be debonded from the surface of wind turbine blade by the commonly used piezoelectric transducers made by PZT-5. The optimal frequency of ultrasonic de-icing of wind turbine blade is also given; finally, the installation way of ultrasonic transducers on the inner surface of wind turbine blade is given.  相似文献   

12.
13.
We propose an optimal algorithm for separating signals with angular manipulation from interference of any type, which is based on the space-time procession of signals. The basic characteristics of such a separator are studied by the method of numerical simulation for different types of antennas with two and three spacing branches: the dependences of separation efficiency on the angular spacing of the signal and interference sources, on the power of signals received, on the separator parameters, on the interference and signal types, etc. It is shown that the considered adaptive receiver can suppress interference efficiently in an ideal communication channel. Radiophysical Research Institute, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 40, No. 3, pp. 378–395, March, 1997.  相似文献   

14.
The possible influence of fastening the models on a side pylon at their tests in wind tunnels on their aerodynamics at supersonic flow speeds has been considered. The physical problem of the pylon and the model interference has been investigated, and the estimates of the pylon influence on integral aerodynamic characteristics have been obtained. The numerical computations of the flow have been done using the averaged Navier-Stokes equations and the SST k-ω turbulence model in the range of freestream Mach numbers M = 2.5-5. As the investigation object the “classical” body of revolution of large aspect ratio is considered, which has a cruciform forward fins and six-blade tail stabilizers.  相似文献   

15.
Two sets of actuators with triangular tips on their active electrodes (13 corona and 15 DBD) are studied in the laboratory. Far field ionic wind velocity, mass flow and efficiency are measured for all the actuators. The best electrode shape as function of tip sharpness and tips number/unit length is determined for each of the above measurements. The gas velocity increases downstream of the tips in all the actuators, but the DBD flow has a three-dimensional structure more complicated than for coronas. The tips improve the efficiency of all the actuators, and the stability of coronas is remarkably improved.  相似文献   

16.
17.
Simulation of the coherent Doppler LiDAR signal requires accurate computation of homogeneous random wind fields. Based on complex random processes with specified spatial statistics given by the covariance function, an improved real correlation random wind field algorithm is proposed for real random processes, the simulation results are compared with the given covariance function and the real correlation algorithm conforms to the given covariance function quite well.  相似文献   

18.
《中国物理 B》2021,30(6):65201-065201
We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numerical simulation and experimental validation. The distribution characteristics and interaction mechanism of the flow field and electromagnetic field of the ICP wind tunnel are investigated using the multi-field coupling method of flow, electromagnetic, chemical, and thermodynamic field. The accuracy of the numerical simulation is validated by comparing the experimental results with the simulation results. Thereafter, the wind tunnel pressure, air velocity, electron density, Joule heating rate, Lorentz force, and electric field intensity obtained using the simulation are analyzed and discussed. The results indicate that for the 1.2-MW ICP wind tunnel, the maximum values of temperature, pressure, electron number density, and other parameters are observed during coil heating. The influence of the radial Lorentz force on the momentum transfer is stronger than that of the axial Lorentz force. The electron number density at the central axis and the amplitude and position of the Joule heating rate are affected by the radial Lorentz force. Moreover, the plasma in the wind tunnel is constantly in the subsonic flow state, and a strong eddy flow is easily generated at the inlet of the wind tunnel.  相似文献   

19.
Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable and unstable pitch modes for the lower and higher activation energies, respectively. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of two modes. The maximum pressure history in the stable pitch remained nearly constant, and the single Mach leg existing on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the unstable pitch due to the generation and decay of complex Mach interaction on the shock front shape. The high-frequency oscillation was self-induced because the intensity of the transverse wave was changed during propagation in one cycle. The high-frequency behavior was not always the same for each cycle, and therefore the low frequency oscillation was also induced in the pressure history.  相似文献   

20.
圆孔衍射光强分布的数值计算   总被引:24,自引:5,他引:19  
利用数值积分的方法,计算了由点光源经圆孔衍射形成的光强分布,分别得到夫琅禾费及菲涅耳衍射图样,宽定量分析了满足夫琅禾费衍射的条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号