首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Weihao Li 《中国物理 B》2022,31(11):117106-117106
Current-induced multilevel magnetization switching in ferrimagnetic spintronic devices is highly pursued for the application in neuromorphic computing. In this work, we demonstrate the switching plasticity in Co/Gd ferrimagnetic multilayers where the binary states magnetization switching induced by spin-orbit toque can be tuned into a multistate one as decreasing the domain nucleation barrier. Therefore, the switching plasticity can be tuned by the perpendicular magnetic anisotropy of the multilayers and the in-plane magnetic field. Moreover, we used the switching plasticity of Co/Gd multilayers for demonstrating spike timing-dependent plasticity and sigmoid-like activation behavior. This work gives useful guidance to design multilevel spintronic devices which could be applied in high-performance neuromorphic computing.  相似文献   

2.
兼具长时程可塑性与短时程可塑性的电子突触被认为是类脑计算系统的重要基础.将一种新型二维材料MXene应用到忆阻器中,制备了基于Cu/MXene/SiO_2/W的仿神经突触忆阻器.结果表明, Cu/MXene/SiO_2/W忆阻器成功实现了稳定的双极性模拟阻态切换,同时成功模拟了生物突触短时程可塑性的双脉冲易化功能和长时程可塑性的长期增强/抑制行为,其中双脉冲易化的易化指数与脉冲间隔时间相关. Cu/MXene/SiO_2/W忆阻器的突触仿生特性,归功于MXene辅助的Cu离子电导丝形成与破灭的类突触响应机理.由于Cu/MXene/SiO_2/W忆阻器兼具长时程可塑性与短时程可塑性,其在突触仿生电子学和类脑智能领域将会具有巨大的应用前景.  相似文献   

3.
Cerebellar long-term depression (LTD) is a type of synaptic plasticity and has been considered as a critical cellular mechanism for motor learning. LTD occurs at excitatory synapses between parallel fibers and a Purkinje cell in the cerebellar cortex, and is expressed as reduced responsiveness to transmitter glutamate. Molecular induction mechanism of LTD has been intensively studied using culture and slice preparations, which has revealed critical roles of Ca2+, protein kinase C and endocytosis of AMPA-type glutamate receptors. Involvement of a large number of additional molecules has also been demonstrated, and their interactions relevant to LTD mechanisms have been studied. In vivo experiments including those on mutant mice, have reported good correlation of LTD and motor learning. However, motor learning could occur with impaired LTD. A possibility that cerebellar synaptic plasticity other than LTD compensates for the defective LTD has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号