首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SiC single crystals were implanted with Fe ions and the effects of implantation temperature, Fe concentration, and subsequent swift heavy ion irradiation on both dopant and damage depth distributions were evaluated by using RBS and channelling techniques. It is found that an increase of the implantation temperature above the threshold temperature for amorphization can lead to the formation of a broad layer (∼50 nm) containing a large concentration of implanted Fe atoms (∼2 at.%) but almost free of implantation defects. This particular configuration is likely due to dynamic annealing during implantation combined with defect annihilation at the surface. It is only observed when the implanted species concentration does not exceed a critical value (which lies between 2 and 5 at.% in the present system). Post-implantation swift heavy ion irradiation leads to a further decrease of the damage level, while the Fe distribution is not affected. The Fe substitutional fraction has been evaluated in the different tested conditions. A maximum value of ∼50% is found when implantation is performed at the temperature above that required to prevent amorphization (470 K in the present system). Swift-heavy ion irradiation seems to induce Fe atoms relocation at substitutional positions.  相似文献   

2.
Indian reduced activation ferritic-martensitic steel was irradiated with 1.1?MeV Fe ions to various doses from 1 to100?dpa at room temperature. The depth profiling of irradiation-induced vacancy-type defects and the defect-recovery under post-irradiation annealing was studied using variable low-energy positron beam Doppler broadening spectroscopy. The influence of irradiation-induced defects on the microstructural properties was studied by glancing incidence x-ray diffraction (GIXRD) and nanoindentation technique. Positron annihilation study showed the signatures of reduced vacancy concentration at the peak damage region due to injected interstitial effect from 30 to 100?dpa and the widening of vacancy-interstitial recombination-rich region towards the end of ion range with the increase in dose. The GIXRD results were analysed by modified Williamson–Hall plot method, and the variation of coherent domain size and micro-strain with irradiation dose was studied. Irradiation-induced hardening was observed in the nanoindentation study. The features observed in the GIXRD and nanoindentation study are correlated with the depth-resolved defect distribution observed in the positron annihilation study.  相似文献   

3.
丁兆楠  杨义涛  宋银  张丽卿  缑洁  张崇宏  罗广南 《物理学报》2017,66(11):112501-112501
为了探讨聚变堆候选低活化钢的抗辐照性能,在兰州重离子加速器国家实验室HIRFL的材料辐照终端,利用63 MeV的~(14)N离子和336 MeV的~(56)Fe离子在-50?C下对一种国产低活化钢进行辐照实验.借助离子梯度减能装置,使入射离子能量在0.22—6.17 MeV/u之间变化,从而在样品表面至24μm深度范围内产生0.05—0.20 dpa的原子离位损伤坪区.利用纳米压痕仪测试样品辐照前后的显微硬度,通过连续刚度测量(constant stiffness measurement)得到低活化钢硬度的深度剖面信息.使用Nix-Gao模型很好地描述了纳米压痕硬度随深度递减的现象(压痕尺寸效应,indentation size effect),从而有效避免了低能离子辐照的软基体效应(softer substrate effect).正电子湮灭寿命谱显示低活化钢在辐照之后长寿命成分增加,说明样品中产生了大量缺陷形成空位团,从而导致了材料力学性能的变化,在离子辐照剂量增加至0.2 dpa时,平均寿命τ_m增加量逐渐变慢,材料中辐照产生的缺陷趋于饱和.  相似文献   

4.
离子注入/辐照引起Al2O3单晶的改性研究   总被引:4,自引:0,他引:4  
600K温度下用110keV的He^+,Ne^+,Ar^+离子注入及320K温度下用230MeV的^208Pb^27+辐照Al2O3单晶样品,研究了离子注入和辐照对Al2O3单晶样品结构和光学特性的影响。从测得的光致发光谱可以清楚地看到,所有样品在波长为375,413和450nm处出现了强的发光峰。且所有5×10^16ion/cm^2注入样品的发光峰均最强。经过高能Pb辐照后的样品,在390nm处出现了新的发光峰。透射电镜分析发现在注入氖样品100nm入射深度以内形成了高浓度的小空洞(1-2nm),在Ne沉积区域有少量大空洞形成。傅立叶变换红外光谱分析发现,波数在460-510cm^-1间的振动吸收带经过离子辐照后展宽,随着辐照量的增大,该振动吸收强度显著减弱。1000—1300cm^-1对应Al-O-Al桥氧伸缩振动模式的吸收带,辐照后向高波数方向移动。对离子注入和辐照对Al2O3单晶样品结构损伤机理进行了初步探讨。Single crystal sapphire (Al2O3 ) samples were implanted at 600 K by He, Ne and Ar ions with energy of 110 keV to doses ranging from 5 × 10^16 to 2× 10^17 ion/cm^2 or irradiated at 320 K by ^208Pb^27+ ion with energy of 1.1 MeV/u to the fluences ranging from 1 × 10^12 to 5 × 10^14 ion/cm^2. The modification of structure and optical properties induced by ion implantation or irradiation were analyzed by using photoluminescence(PL) and Fourier transformation infrared spectrum(FIR) spectra and transmission electron microscopy( TEM ) measurements. The PL measurements showed that absorption peaks located at 375,413 and 450 nm appeared in all the implanted or irradiated samples, the PL intensities reached up to the maximum for the 5 × 10^16 ion/cm^2 implanted samples. After Pb-ion irradiation, a new peak located at 390 nm formed. TEM analyses showed that small size voids,( 1--2 nm) with high density were formed in the region from the surface till to about 100 nm in depth and also large size Nebubble formed in the Ne-doped region. From the obtained FTIR spectra, it was found that Pb-ion irradiation induced broadening of the absorption band in 460-510 cm^-1 and position shift of the absorption band in 1 000- 1 300 cm^- 1 towards to high wavenumber. The possible damage mechanism in single crystal sapphire induced by energetic ion implantation or irradiation was briefly discussed.  相似文献   

5.
The dependence of the depth of penetration of implanted aluminum atoms into polycrystalline titanium on the grain size of initial target samples is analyzed. The irradiation was carried out by a pulse-frequency ion beam of a Diana-2 source. The increase in the modified layer thickness to 250 nm with decreasing grain size in the initial material is revealed. In the interpretation of the observed regularities, we take into account the energetically inhomogeneous composition of a beam represented by three components and probable intense sputtering of the target surface by ions. In terms of the simulation, it is found that, in samples with relatively fine grains, a significant contribution to the formation of the depth profiles of implanted atoms comes from the radiation-induced diffusion; in samples with coarse grains, it comes from the diffusion along migrating extended defects, which appear and rearrange themselves in the process of ion implantation.  相似文献   

6.
Ion implantation is a postgrowth processing technique which, when combined with annealing, can be used to tune the absorption wavelength of quantum well devices. We have implanted and annealed, three different quantum well infrared photodetector structures, and measured the absorption spectra of the samples by Fourier transform spectroscopy. The peak absorption wavelength shift of each structure has been calculated as a function of diffusion length by simulating the diffusion processes. We found different diffusion rates for the structures and attribute this to different numbers of as-grown defects. Our results indicate that agglomeration of single defects into defect clusters limits the ability of ion implantation to tune the wavelength of a structure with a higher number of as-grown defects. Thus, a structure with the lowest number of as-grown defects is most useful for fabricating a multi-color quantum well photodetector by ion implantation, because in this case ion implantation can enhance the diffusion rate considerably leading to large red- shift in peak absorption wavelength.  相似文献   

7.
A simple technique for the study of the spatial distribution of the damage produced by ion implantation of silicon has been developed. The damage depth distribution for 40 keV boron ions in silicon has been studied at irradiation doses from 7 × 1011 to 3.9 × 1014 ions/cm2 and the relative defect peak depth R d/R p = 0.85 determined. An increase of layer conductivity as the surface part of the implanted layer is removed has been revealed. This effect is caused by the presence of radiation defects in the surface region of the layer. The “electrical” cluster diameter is about 28 A and the overlapping cluster dose is close to 1 × 1013 ions/cm2.  相似文献   

8.
In the present review we describe the series of investigations in which field ion microscopy is used to study the structural and phase changes in alloys with long-range order and in pure metals after ion implantation by different gas ions. It is demonstrated that ion implantation induces defects of different types spread to considerable depths from the irradiated surface that exceed many times the estimated ion mean free path. It is established that disordering and generation of various defects can be observed under irradiation of the ordered alloy surfaces. In PdCuAg alloys being supersaturated solid solutions, the irradiation provokes the intermittent decomposition. The structure of defects induced by ion implantation including disordered regions, dislocations, dislocation configurations, dislocation barriers, vacancy clusters, and segregations of one of the components is analyzed. The structure and sizes of these defects inside single cascades of displacements are determined.  相似文献   

9.
The modeling of diffusion motion of atoms implanted into a crystal and irradiation-induced point defects in the space beyond the projective range has been performed. It has been shown that, beyond the ion range, there arises a region strongly depleted in vacancies, which ends with a peak in the probability of recombination of interstitial atoms with vacancies and a peak in the concentration of complexes between vacancies and implanted atoms. In the process, the key role is played by the following factors: (1) the total number of irradiation-induced atoms in interstitial sites, including implanted atoms and intrinsic atoms of the crystal, exceeds the number of irradiation-induced vacancies; (2) the existence of thermodynamically equilibrium vacancies; and (3) the formation of immobile complexes of implanted atoms with vacancies. The sizes of the region with an extremely low vacancy concentration can substantially exceed the mean free path of ions and reach several tens of micrometers. The possible manifestations of the effect under consideration have been analyzed.  相似文献   

10.
完成了不同注量或温度下100 keV 的He 离子注入高纯钨的实验,并利用纳米压痕技术测量了材料的微观力学性能。所有注入样品的纳米硬度值都高于未注入样品的纳米硬度值。对于室温注入样品,随着注量的增加,样品抗弹性变形能力下降;当注量不高于5x1017 ions/cm2 时,钨的纳米硬度峰值随着注量的增加而增加;注量为1x1018 ions/cm2 的钨样品的纳米硬度峰值反而降低。高温注入样品的抗弹性变形能力优于室温注入样品的抗弹性变形能力;随着注入温度的增加,样品的平均纳米硬度值和弹性模量略有下降。分析讨论了He 注入钨硬化和抗弹性形变能力降低的可能原因。Tungsten has been selected as divertor materials in fusion reactors because of its high thermal conductivity,high melting point, low expansion coefficient and high threshold energy for sputtering etc. The paper presents the hardening behaviour of high pure tungsten by 100 keV He+ with different fluences from 5x1016 ions/cm2 to 1x1018ions/cm2 at room temperature, and with fluence of 1x1018 ions/cm2 at higher temperatures (400, 600 and 800 °C). The microscopic mechanical properties of these samples were investigated by nano-indentation technology. The results show that all of the implanted samples harden obviously. The reason for hardening may be that defects of interstitial dislocation loops or dense helium bubbles etc induced by helium implantation obstacle the movement of dislocation. The peak nanohardness of the samples increased with the fluences increasing when the fluence is not more than 5x1017 ions/cm2, while the nano-hardness value of the implanted sample with the fluence of 1x1018 ions/cm2 decreases and the nano-hardness changes little in the region of 50 nm to 200 nm from surface. For all the implanted samples with 1x1018 ions/cm2 at higher temperatures, their nano-hardness values are similar, but show a trend of decrease with increasing temperature.The reason may be the decrease of the defects’ density during implantation at higher temperatures. In addition, the capability of resisting deformation for the implanted tungsten reduces with increasing fluence and increases a little at higher temperatures.  相似文献   

11.
The enhancement of the anodization of silicon due to ion implantation is observed to be significant in the case of heavy ion implant with doses more than 1014 ions/cm2. The studies indicate that the chemical effect caused by the implanted ions is smaller, but the lattice defects introduced by the implantation play an important role in the enhancement of the oxidation rate. A novel application of this effect to investigate the depth profile of damage in heavy implanted silicon is shown.  相似文献   

12.
Si-SiO2 structures irradiated with 11-MeV electrons for 10 s and then implanted with B+ ions with an energy of 10 keV at a dose of 1.0×1012 cm-2 through the oxide were annealed at different temperatures. MOS capacitors including such oxide layers were studied by quasi-static C/V and thermally stimulated current (TSC) methods. A comparison of the radiation defect annealing of double-treated (electron-irradiated and ion-implanted) samples and of implanted-only samples was carried out. It is shown that a preceding low-dose high-energy electron irradiation of the samples leads to a lowering of the annealing temperature of radiation defects introduced by ion implantation. After annealing at 500 °C for 15 min, no TSC spectra for the double-treated samples were observed. The spectra of the other samples (which were not previously irradiated) showed that after the same thermal treatment only some of the radiation defects introduced by ion implantation are annealed. The difference between the annealed interface state density of previously electron-irradiated and current MOS structures is also demonstrated. A possible explanation of the results is proposed . PACS 61.82.Fk; 85.40.Ry; 61.80.Fe  相似文献   

13.
Thermally activated migration of defects drives microstructural evolution of materials under irradiation. In the case of vacancies, the activation energy for migration is many times the absolute temperature, and the dependence of the diffusion coefficient on temperature is well approximated by the Arrhenius law. On the other hand the activation energy for the migration of self-interstitial defects, and particularly self-interstitial atom clusters, is very low. In this case a trajectory of a defect performing Brownian motion at or above room temperature does not follow the Arrhenius-like pattern of migration involving infrequent hops separated by the relatively long intervals of time during which a defect resides at a certain point in the crystal lattice. This article reviews recent atomistic simulations of migration of individual interstitial defects, as well as clusters of interstitial defects, and rationalizes the results of simulations on the basis of solutions of the multistring Frenkel–Kontorova model. The treatment developed in the paper shows that the origin of the non-Arrhenius migration of interstitial defects and interstitial defect clusters is associated with the interaction between a defect and the classical field of thermal phonons. To cite this article: S.L. Dudarev, C. R. Physique 9 (2008).  相似文献   

14.
首次对As-Ge-Se三元系统和As-Ge-Se-Te四元系统的硫系玻璃试样进行了N+离子注入试验。结果表明,玻璃试样的显微硬度随N+离子注入剂量的增加而提高,并且在注入剂量达到2.5×1016附近的数值时为最大。XPS谱结果显示,在Ar+离子轰击6分钟后的试样表面出现N1s的结合能峰,此外各元素的结合能峰也在N+离子注入后发生了位移,并随Ar+离子轰击时间向高能方向移动。  相似文献   

15.
Transient enhanced diffusion of phosphorus in silicon has been investigated for implants below and above the threshold for a complete amorphization. Rapid thermal processes (electron beam) and conventional furnaces have been used for the annealing. In the case of implants below amorphization, a strong enhanced diffusion, proportional to the amount of damage produced, has been observed. The extent of the phenomenon is practically independent of the damage depth position. In contrast to this, the formation of extended defects at the original amorphous-crystalline interface makes the diffusivity strongly dependent on depth in the case of post-amorphized samples. No enhanced diffusion effect is observed if the dopant is confined in the amorphous layer, while a remarkable increase in the diffusivity is detected for the dopant located in the crystalline region beyond the amorphous-crystalline interface.Damage distribution after implantation and its evolution during annealing have been determined by double crystal x-ray diffraction and correlated to anomalous P diffusivity. A qualitative distribution of the interstitial excess in solution in the silicon lattice during annealing is proposed for the two different cases. These point defects, released by the dissolution of the interstitial clusters produced by the implanted ions, have been identified as responsible for the observed enhanced P diffusion.  相似文献   

16.
Wei-Yuan Luo 《中国物理 B》2022,31(5):54214-054214
Oxygen ions (O+) were implanted into fused silica at a fixed fluence of 1×1017 ions/cm2 with different ion energies ranging from 10 keV to 60 keV. The surface roughness, optical properties, mechanical properties and laser damage performance of fused silica were investigated to understand the effect of oxygen ion implantation on laser damage resistance of fused silica. The ion implantation accompanied with sputtering effect can passivate the sub-/surface defects to reduce the surface roughness and improve the surface quality slightly. The implanted oxygen ions can combine with the structural defects (ODCs and E' centers) to reduce the defect densities and compensate the loss of oxygen in fused silica surface under laser irradiation. Furthermore, oxygen ion implantation can reduce the Si-O-Si bond angle and densify the surface structure, thus introducing compressive stress in the surface to strengthen the surface of fused silica. Therefore, the laser induced damage threshold of fused silica increases and the damage growth coefficient decreases when ion energy up to 30 keV. However, at higher ion energy, the sputtering effect is weakened and implantation becomes dominant, which leads to the surface roughness increase slightly. In addition, excessive energy aggravates the breaking of Si-O bonds. At the same time, the density of structural defects increases and the compressive stress decreases. These will degrade the laser laser-damage resistance of fused silica. The results indicate that oxygen ion implantation with appropriate ion energy is helpful to improve the damage resistance capability of fused silica components.  相似文献   

17.
To realize the simulation experiments with the use of two ion beams at the injection complex of the BELA accelerator (Based on ECR ion source Linear Accelerator), it is necessary to determine the energy and irradiation angle of the beam of light ions which will be implanted into the region of radiation damage induced by heavy-ion beam. The depth of light-ion implantation is determined by the energy and kind of particles initiating the damage, as well as by their incidence angle. It is supposed that the incidence direction of heavy ions will coincide with the normal to the specimen surface. In our work, the necessary implantation zone for the iron ion beam with an energy of 3.2 MeV is located at depths of 300–800 nm. The simulation of the hydrogen and helium ion paths in the material of the iron target in the energy range from 150 to 600 keV at the angle to the normal from 0° to 65° is performed. The range of energies and irradiation angles for the hydrogen and helium ions are determined for the implantation into the radiation-induced defect-formation zone.  相似文献   

18.
Silicon layers implanted with boron, lithium, phosphorus, and silicon are investigated by x-ray measurements of the lattice constant. It is established that, as a result of ion implantation in silicon, stable interstitial complexes are generated in concentrations comparable to those of vacancy type defects. The interstitial complexes are annealed in stages, viz., I at 140, II at 500°C in the case of irradiation of silicon with light ions, and I at 180, II at 560°C in crystals irradiated with medium mass ions.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 76–80, July, 1984.The authors are grateful to V. D. Tkachev for useful discussion of the results.  相似文献   

19.
Defect spatial distributions are investigated after implantation of ions in CdxHg1−xTe under various sets of conditions (radiation dose, type and energy of ions, ion current density, and dose absorption rate). Distribution profiles of electrically active radiation-induced defects are calculated with allowance for the generation of defect complexes of vacancion nature. Defect profiles are determined in experiments after implantation of hydrogen and iron ions at constant low ion current densities, and after implantation of copper, tungsten, and aluminum ions in the case of pulsed bombardment at high ion current densities. Secondary-ion mass spectrometry, electron-positron annihilation, Rutherford backscattering of ions, and differential Hall measurements are used to obtain distribution profiles of interstitial ions, vacancion and extended defects, and electrically active defects, respectively. The profiles of these defects are analyzed for various ion-implantation conditions. V. D. Kuznetsov Siberian Physicotechnical Institute at Tomsk State University Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 101–116, January, 1998.  相似文献   

20.
Despite decades of study, voids in silicon produced by implantation of H or He followed by annealing continue to be a topic of interest. There are two key applications: gettering of heavy metal impurities, and “ion cutting” used in silicon-on-insulator fabrication. Positron annihilation is one of the few techniques that can probe the vacancies and vacancy clusters that are the precursors to void formation. Data from recent studies will be discussed, including (I) isotopic substitution, in which comparisons of H vs. D implantation permit examination of the impact of primary point defects vs. chemical effects. Remarkable differences exist between H and D in blistering of silicon - ion doses 2-3 times higher are required for blistering with D than with H, despite a higher rate of primary defect production for D; (II) the effect of annealing temperature ramp-rate, in which we show that ramp-rate has a significant impact on residual defects, despite which it is so disregarded as to often be omitted from published reports; and (III) comparisons with electron microscopy which suggest that positron annihilation can be insensitive to large voids. In these studies, positron annihilation augments data from techniques including ion channelling, Raman scattering and electron microscopy; the suite of techniques allows elucidation of the interplay between implanted impurities and the vacancies and interstitials created by implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号