首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高淼  孔鑫  卢仲毅  向涛 《物理学报》2015,64(21):214701-214701
通过第一性原理密度泛函和超导Eliashberg理论计算, 我们研究了Li2C2Cmcm相的电子结构和电声耦合特性, 预言这种材料在常压和5GPa下是由电声耦合导致的转变温度分别为13.2 K 和9.8 K的超导体, 为实验上探索包含一维碳原子链的材料中是否可能存在超导电性、发现新的超导体提供了理论依据. 如果理论所预言的Li2C2超导电性得到实验的证实, 这将是锂碳化物中转变温度最高的超导体, 高于实验观测到的LiC2的1.9 K和理论预言的单层LiC6的8.1 K超导转变温度.  相似文献   

2.
It is shown that in a strongly correlated system there exists multiple exchange-mediated interaction (MEIW). From the numerical calculations of Tc, (Tc vs. x and y for La2-xSrxCuO4 and Y1Ba2Cu3O7-y), the small isotope effect, the large gap and some explanations for the observed phenomena, this paper affirms that the high-T, superconductivity is caused by the MEIW, the phonon-mediated interaction and the tunneling coupling. The heavy-fermion superconductivity is mainly caused by the MEMI, and, in the meantime, the phonon-mediated interaction h h also some contributions. The extremely large gap below TN in AF Chevrel phase, some AF materials come from the MEMI. The organic superconductivity might be caused mainly by the MEMI.  相似文献   

3.
In general, heavy elements contribute only to acoustic phonon modes, which are less important for the superconductivity of hydrides. However, it was revealed that the heavier elements could enhance the phonon-mediated superconductivity in ternary hydrides. In the H3S–Xe system, a novel H3SXe compound was discovered by first-principle calculations. The structural phase transitions of H3SXe under high pressures were studied. The R-3m phase of H3SXe was predicted to appear at pressures above 80 GPa, which transitions to C2/m, P-3m1, and Pm-3m phases at pressures of 90, 160, and 220 GPa, respectively. It has been anticipated that the Pm-3m-H3SXe phase with a similar structural feature as that of Im-3m-H3S is a potential high-temperature superconductor with a Tc of 89 K at 240 GPa. The Tc value of H3SXe is lower than that of H3S at high pressure. The “H3S” host lattice of Pm- 3m-H3SXe is a crucial factor influencing the Tc value. The Xe atoms could accelerate the hydrogen-bond symmetrization. With the increase of the atomic number, the Tc value linearly increases in the H3S–noble-gas-element system. This indicates that the superconductivity can be modulated by changing the relative atomic mass of the noble-gas element.  相似文献   

4.
郭静  孙力玲 《物理学报》2015,64(21):217406-217406
在凝聚态物理研究中, 压力作为对物质状态调控的独立变量得到了广泛的应用. 压力对发现物质的新现象、新规律及对其形成机理的理解和对相关理论的验证起到了重要的作用, 尤其在超导电性的研究中取得了巨大的成功. 文章简要的介绍了通过利用压力手段对具有相分离结构的碱金属铁硒基超导体AxFe2-ySe2 (A=K, Rb, Tl/Rb)开展的系列研究所取得的实验结果, 以及其他一些文献中报道的在此方面的主要实验与理论研究工作, 包括压力导致的超导再进入现象和其产生的量子临界机理、其特有的反铁磁绝缘体相在该类超导体实现超导电性中的作用、化学负压力对超导电性的影响、构成该类超导体的反铁磁序与其寄居的超晶格的关系等.  相似文献   

5.
Yingying Wang 《中国物理 B》2022,31(10):106201-106201
Flourishing rare earth superhydrides are a class of recently discovered materials that exhibit near-room-temperature superconductivity at high pressures, ushering in a new era of superconductivity research at high pressures. Yttrium superhydrides drew the most attention among these superhydrides due to their abundance of stoichiometries and excellent superconductivities. Here, we carried out a comprehensive study of yttrium superhydrides in a wide pressure range of 140 GPa—300 GPa. We successfully synthesized a series of superhydrides with the compositions of YH4, YH6, YH7, and YH9, and reported superconducting transition temperatures of 82 K at 167 GPa, 218 K at 165 GPa, 29 K at 162 GPa, and 230 K at 300 GPa, respectively, as evidenced by sharp drops in resistance. The structure and superconductivity of YH4 were taken as a representative example and were also examined using x-ray diffraction measurements and the superconductivity suppression under external magnetic fields, respectively. Clathrate YH10, a candidate for room-temperature superconductor, was not synthesized within the study pressure and temperature ranges of up to 300 GPa and 2000 K. The current study established a detailed foundation for future research into room-temperature superconductors in polynary yttrium-based superhydrides.  相似文献   

6.
The crystal structure, electronic structure, and superconductivity of copper hydrides at high pressure have been studied by ab initio calculation. Consistent with experimental report, results show that the predicted stoichiometry Cu2H with the P-3m1 space group is stable above 16.8 GPa. The stoichiometry of CuH with the Fm-3m space group is predicted to be synthesized above 30 GPa, but it is metastable and dynamical instable up to 120 GPa. The electronic band calculations reveal that Cu2H is a good metal at a stable pressure range, whereas CuH is an insulator. Moreover, the other hydrogenrich compounds CuH2 and CuH3 are thermodynamically and dynamically unstable, respectively. The calculated superconducting transition temperature (T c) of Cu2H at 40 GPa is 0.028 K by using the Allen-Dynes modified McMillan equation.  相似文献   

7.
Abstract

Since their discovery in 1986 [11], the high temperature superconducting (HTS) copper oxides have presented a continuing challenge to both experiment and theory. The identification of the underlying mechanism (or mechanisms) responsible for their superconductivity remains an unanswered question. Numerous theories have been proposed ranging from phonon-mediated pairing of the charge carriers, similar to the Bardeen–Cooper–Schrieffer (BCS) [2] theory developed for conventional low-temperature superconductors, to novel concepts independent of phonons [3–-l0]. For conventional superconductors the variation of the transition temperature Tc , with isotopic mass M (from BCS theory Tc M?a ) was an important verification of the contribution of electron-phonon interactions to electron pairing. Measurements of this effect of HTS cuprates resulted in isotope shifts much smaller than predicted by theory [ll-14], raising doubts about the role of phonons. However, Barbee [15] argued that the size of the isotope shift is not a unique indicator of phonon-mediated pairing. Since the HTS materials contain Cu ions with partially filled 3d shells, many of the alternative theories of HTS have focused on magnetic interactions and associated spin fluctuations [3–10]. The reader is referred to Ref. 16 for the details of other theories that have been proposed and to the article by Schrieffer and Anderson [17) for an overview discussion of the theory of high temperature superconductivity.  相似文献   

8.
We have successfully synthesized a new rhenium-based hexagonal bronze material, HgxReO3, which exhibits superconductivity with the transition temperature Tc=7.7 K at ambient pressure and 11.1 K at 4 GPa. This compound is a superconductor with the highest Tc among hexagonal bronzes. Moreover, it presents the novel crystallographic feature that (Hg2)2+ polycations, in contrast to monatomic cations in known hexagonal bronzes, are incorporated into open channels. There is evidence that conducting electrons tightly couple with Hg-related phonons. Our results inspire detailed studies on the role of the rattling phonon in the occurrence of superconductivity in the hexagonal bronzes.  相似文献   

9.
The interaction of strongly correlated electrons with phonons in the framework of the Hubbard-Holstein model is investigated. The electron-phonon interaction is considered to be strong and is an important parameter of the model, in addition to the Coulomb repulsion of electrons and the band filling. This interaction with nondispersive optical phonons is transformed to the problem of mobile polarons using the canonical transformation of Lang and Firsov. We discuss the case where the on-site Coulomb repulsion is exactly canceled by the phonon-mediated attractive interaction. It is suggested that polarons exchanging phonon clouds can lead to polaron pairing and superconductivity. The fact that the frequency of the collective mode of phonon clouds is larger than the bare frequency then determines the superconducting transition temperature.  相似文献   

10.
The kagome metals AV3Sb5(A=K,Rb,Cs)under ambient pressure exhibit an unusual charge order,from which superconductivity emerges.In this work,by applying hydrostatic pressure using a liquid pressure medium and carrying out electrical resistance measurements for RbV3Sb5,we find that the charge order becomes suppressed under a modest pressure pc(1.4 GPa3Sb5.Our findings point to qualitatively similar temperature-pressure phase diagrams in KV3Sb5 and RbV3Sb5,{and suggest a close link}between the second superconducting dome and the high-pressure resistance anomalies.  相似文献   

11.
The Raman spectra of a naphthalene crystal have been measured at room temperature in the pressure range up to 20 GPa. The pressure shift and Grüneisen parameters for intermolecular and intramolecular phonons have been determined. The maximum rate of the pressure shift for intermolecular phonons is 44 cm?1/GPa, and the rate of the pressure shift for intramolecular phonons lies in the range from 1 to 11 cm?1/GPa for different modes. The pressure dependence of the phonon frequencies for direct and inverse pressure variations has a hysteresis in the pressure range from 2.5 to 16.5 GPa. It has been shown that the linear dependence of the intermolecular phonon frequency on the crystal density has a peculiarity, which indicates a possible phase transition at a pressure of 3.5 GPa. The pressure dependence of intramolecular phonons related to the stretching vibrations of hydrogen atoms exhibits features that are characteristic of intermolecular phonons, which is associated with the influence of shortened distances between the hydrogen atoms of the neighboring molecules on the intermolecular interaction potential.  相似文献   

12.
邓世杰  赵宇宏  侯华  文志勤  韩培德 《物理学报》2017,66(14):146101-146101
采用基于密度泛函理论的第一性原理方法,计算研究了压力对Ti_2AlC与Ti_2AlN结构、力学性能的影响.研究发现压力的增大会使体系的体积比降低,Ti_2AlC压缩性较Ti_2AlN好.力学性能研究发现,压力的增大使材料抵抗变形能力增强,体系的延展性有了很大的提升,当压力超过40 GPa后,Ti_2AlC与Ti_2AlN从脆性材料转变为延性材料,体模量与剪切模量的比值达到1.75,延展性有了很大的提升.通过准谐德拜模型,分析了压力与温度对Ti_2AlC与Ti_2AlN体模量、热容及热膨胀系数的影响.结果表明,随着温度的升高,Ti_2AlN与Ti_2AlC的体模量下降.定容热容与定压热容的变化趋势相同,但在高温下,定容热容遵循Dulong-Petit极限,温度对热容的影响效果较压力明显.温度与压力对Ti_2AlN与Ti_2AlC线膨胀系数的影响主要发生在低温区域.  相似文献   

13.
Tingting Ye 《中国物理 B》2022,31(6):67402-067402
The recent discovery of room temperature superconductivity (283 K) in carbonaceous sulfur hydride (C-S-H) has attracted much interest in ternary hydrogen rich materials. In this report, ternary hydride P-S-H was synthesized through a photothermal-chemical reaction from elemental sulfur (S), phosphorus (P) and molecular hydrogen (H2) at high pressures and room temperature. Raman spectroscopy under pressure shows that H2S and PH3 compounds are synthesized after laser heating at 0.9 GPa, and a ternary van der Waals compound P-S-H is synthesized with further compression to 4.6 GPa. The P-S-H compound is probably a mixed alloy of PH3 and (H2S)2H2 with a guest-host structure similar to the C-S-H system. The ternary hydride can persist up to 35.6 GPa at least and shows two phase transitions at approximately 23.6 GPa and 32.8 GPa, respectively.  相似文献   

14.
We report an experimental determination of the dispersion of the soft phonon mode along [100] in uranium as a function of pressure. The energies of these phonons increase rapidly, with conventional behavior found by 20 GPa, as predicted by recent theory. New calculations demonstrate the strong pressure (and momentum) dependence of the electron-phonon coupling, whereas the Fermi-surface nesting is surprisingly independent of pressure. This allows a full understanding of the complex phase diagram of uranium and the interplay between the charge-density wave and superconductivity.  相似文献   

15.
采用基于粒子群优化算法的结构预测程序CALYPSO, 并结合第一性原理的VASP程序, 在175 GPa发现NbSi2的奇异立方高压相. 在此结构中, Nb原子形成金刚石结构, 而Si原子则形成正四面体镶嵌在金刚石结构中. 声子谱计算结果表明该结构是动力学稳定的. 电子结构分析表明, 六角相和立方相NbSi2均为金属, 对金属性贡献较大的是Nb原子, 而且Nb和Si原子之间存在明显的p-d杂化现象, 电荷更多地聚集在Si四面体中. 利用“应力应变”方法, 计算了NbSi2的弹性常数, 分析了其体积模量、剪切模量、杨氏模量和德拜温度等热动力学性质随压力的变化并进行了详细的讨论. 根据剪切模量和体积模量的比值分析了NbSi2两种相结构的脆性和延展性, 发现压力会导致六角相NbSi2的延展性增加, 但对立方相结构的延展性影响较小; 采用经验算法计算了NbSi2两种相结构硬度变化情况, 结合这一比值进行了详细的分析. 弹性各向异性计算结果表明, 随着压力增加, 六角结构的各向异性增强, 而立方结构的各向异性减小.  相似文献   

16.
The superconductivity of solid oxygen in ζ phase was investigated by first-principles calculations based on the density functional theory. Using a monoclinic C2/m structure, we calculated the superconducting transition temperature by the Allen–Dynes formula and obtained 2.4 K at 100 GPa for the effective screened Coulomb repulsion constant μ* of 0.13. The transition temperature slowly decreases with increasing pressure and becomes 1.3 K at 200 GPa. The phonon analysis shows that the electron–phonon coupling is dominantly enhanced by the intermolecular vibrations of O2 rather than the intramolecular ones. The phonon modes showing the strong electron–phonon coupling were found to be concentrated in the phonon frequency range of 100–150 cm?1 at around the M-point in the Brillouin zone.  相似文献   

17.
陈余  邢永明 《计算物理》2020,37(2):231-239
采用第一性原理,研究不同静水压力(0~20 GPa)下Al14Mn2P16的弹性与磁光性质.计算得到基态是铁磁态.弹性稳定性判据表明该体系是稳定的.研究发现磁矩随静水压力的增加而减小.静水压力低于5 GPa时,居里温度达到184 K,随着静水压力的增加略有下降;有趣的是,当静水压力高于5 GPa时,随着静水压力的增加,居里温度急剧下降,在18 GPa时消失.同时还发现随静水压力的增加可见光范围的吸收峰有明显的蓝移,当静水压力达到20 GPa时,可见光范围的吸收峰消失.  相似文献   

18.
We performed resistivity measurements in CuRh2S4 under quasihydrostatic pressure of up to 8.0 GPa, and found a pressure-induced superconductor-insulator transition. Initially, with increasing pressure, the superconducting transition temperature T(c) increases from 4.7 K at ambient pressure to 6.4 K at 4.0 GPa, but decreases at higher pressures. With further compression, superconductivity in CuRh2S4 disappears abruptly at a critical pressure P(SI) between 5.0 and 5.6 GPa, when it becomes an insulator.  相似文献   

19.
We study the effects of pressure on the electron-phonon interaction in MgB2 using density-functional-based methods. Our results show that the superconductivity in MgB2 vanishes by 100 GPa, and then reappears at higher pressures. In particular, we find a superconducting transition temperature Tc approximately 2 K for mu*=0.1 at a pressure of 137 GPa.  相似文献   

20.
富氢材料被认为是室温超导体的最佳候选体系,是物理学、材料科学等多学科的热点研究领域之一。理论和实验研究发现的新型共价氢化物H3S和笼状氢化物LaH10的超导转变温度(Tc)均超过200 K,进一步推动了对富氢化合物超导电性的探索。最近,通过高压实验合成的碳质硫氢化物在288 K的室温下实现了零电阻,让人们看到了室温超导的曙光。本文结合课题组在此领域的主要成果,介绍了3类典型富氢化合物的结构及超导特性,包括近期首次在层状氢化物中发现的具有类五角石墨烯结构的富氢超导体HfH10,其超导转变温度高达213~234 K。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号