首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structural defects affecting the efficiency of multicrystalline silicon solar cells are investigated by the electron-beam-induced current (EBIC) mode of a scanning electron microscope and the laser-beam-induced current (LBIC) method. It is experimentally demonstrated that the LBIC technique is more sensitive to electrically active 2D defects than the EBIC approach at large values of the diffusion length and excitation-beam penetration depth. The comparison of LBIC (or EBIC) and electroluminescence images enables us to reveal the correlation between solar-cell short circuits and electrically active structural defects.  相似文献   

2.
In this letter a calibrated numerical model of a III–V dual‐junction solar cell including tunnel diode and Bragg reflector is presented. The quantum efficiencies of the subcells are computed by using the principle of current‐limitation in monolithic multi‐junction solar cells. A special procedure with bias‐illumination and bias‐voltage was implemented. Numerical simulations are used to study the influence of the top cell thickness on the cells' quantum efficiency and on the current‐matching condition. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In pursuit of low-cost and highly efficient thin film solar cells, Cu(In,Ga)(Se,S)2/CdS/i-ZnO/ZnO:Al (CIGSS) solar cells were fabricated using a two-step process. The thickness of i-ZnO layer was varied from 0 to 454 nm. The current density-voltage (J-V) characteristics of the devices were measured, and the device and performance parameters of the solar cells were obtained from the J-V curves to analyze the effect of varying i-ZnO layer thickness. The device parameters were determined using a parameter extraction method that utilized particle swarm optimization. The method is a curve-fitting routine that employed the two-diode model. The J-V curves of the solar cells were fitted with the model and the parameters were determined. Results show that as the thickness of i-ZnO was increased, the average efficiency and the fill factor (FF) of the solar cells increase. Device parameters reveal that although the series resistance increased with thicker i-ZnO layer, the solar cells absorbed more photons resulting in higher short-circuit current density (Jsc) and, consequently, higher photo-generated current density (JL). For solar cells with 303-454 nm-thick i-ZnO layer, the best devices achieved efficiency between 15.24% and 15.73% and the fill factor varied between 0.65 and 0.67.  相似文献   

4.
We present a novel solar cell structure, the “buried emitter solar cell”. This concept is designed for decoupling the metallisation geometry from the geometry of the carrier collecting p–n junction in back‐contacted (and in particular back‐junction) solar cells without requiring electrical insulation by dielectric layers. The most prominent features of this device structure are a carrier collecting emitter that covers close to 100% of the total cell area and an effective electrical insulation between emitter and base metallisation via a p+–n+ junction. The experimental results presented in this paper report a 19.5% efficient “buried emitter solar cell”, where 50% of the solar cell's rear side exhibit a p+–n+ junction. This preparation technique implies covering a boron‐doped p‐type emitter with an n‐type surface layer that can be efficiently surface‐passivated by thermal oxidation. All structuring of this cell has been performed by laser processing without any photo‐lithography. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The Luminescent Solar Concentrator (LSC) consists of a transparent polymer plate, containing luminescent particles. Solar cells are connected to one or more edges of the polymer plate. Incident light is absorbed by the luminescent particles and re‐emitted. Part of the light emitted by the luminescent particles is guided towards the solar cells by total internal reflection. Since the edge area is smaller than the receiving one, this allows for concentration of sunlight without the need for solar tracking. External Quantum Efficiency (EQE) and current–voltage (IV) measurements were performed on LSC devices with multicrystalline silicon (mc‐Si) or GaAs cells attached to the sides. The best result was obtained for an LSC with four GaAs cells. The power conversion efficiency of this device, as measured at European Solar Test Installation laboratories, was 7.1% (geometrical concentration of a factor 2.5). With one GaAs cell attached to one edge only, the power efficiency was still as high as 4.6% (geometrical concentration of a factor 10). To our knowledge these efficiencies are among the highest reported for the LSC. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Mass production technology for multicrystalline Si solar cells   总被引:1,自引:0,他引:1  
The worldwide shipments of the PV modules in the last 10 years show an increase of about 20% per year. The worldwide PV modules shipments were 201 MW in 1999. About 85% modules have made from crystalline silicon. The multicrystalline silicon (mc-Si) modules shipments have showed substantial increase. PV market would be expected to increase by the development of low cost and high technologies of mc-Si solar cells. This paper reviews recent progress in mass production technologies of mc-Si solar cells.  相似文献   

7.
The photographic surveying of electroluminescence (EL) under forward bias was proved to be a powerful diagnostic tool for investigating not only the material properties but also process induced deficiencies visually in silicon (Si) solar cells. Under forward bias condition, solar cells emit infrared light (wavelength around 1000 to 1200 nm) whose intensity reflects the number of minority carriers in base layers. Thus, all the causes that affect the carrier density can be detected, i.e., the minority carrier diffusion length (or in other words, lifetime), recombination velocity at surfaces and interfaces, etc. (intrinsic material properties), and wafer breakage and electrode breakdown, etc. (extrinsic defects). The EL intensity distribution can be captured by Si CCD camera in less than 1 s, and the detection area simply depends upon the optical lens system suitable to the wide range of 1 cm–1.5 m. This fast and precise technique is superior to the conventional scanning method such as the laser beam induced current (LBIC) method. The EL images are displayed as grayscale, which leads to the difficulty of distinguishing the sorts of those deficient areas. Since the intrinsic deficiency is more sensitive to temperature than the extrinsic deficiency, the change in solar cell temperature can offer the difference in EL intensity contrasts. These effects upon the measurement temperature can be applied to categorize the types of deficiency in the crystalline Si solar cell.  相似文献   

8.
A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies—which are promising—are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants.  相似文献   

9.
In this paper, large area multi-crystalline silicon (mc-Si) solar cells of 156 mm × 156 mm were fabricated by the combination of Ag-assisted etching and sodium hydroxide (NaOH) treatment. Scanning electron microscope, UV–Vis–NIR spectrophotometer, external quantum efficiency measurement system, and current–voltage test were used to characterize the etched black silicon wafers and the fabricated solar cells. It was found that, though the black mc-Si without NaOH treatment showed a lowest reflectance of 2.03 % in the wavelength of 400–900 nm, the maximum conversion efficiency came from the mc-Si solar cells produced by combination of Ag-assisted etching and NaOH treatment. Though the solar cell with additional NaOH treatment for 30 s presented a reflectance of 5.45 %, it presented the highest conversion efficiency of 18.03 %, which is 0.64 % higher than the traditional mc-Si solar cell (17.39 %) and much higher than that of the black mc-Si solar cell without NaOH treatment (16.24 %).  相似文献   

10.
Light‐induced degradation (mc‐LID or LeTID) can lead to a severe efficiency loss in multi‐crystalline solar cells. The underlying mechanism clearly distinguishes from known mechanisms as B‐O‐LID and Fe‐B‐LID. Various defect models have been suggested for mc‐LID mainly based on metal impurities, including Cu which is known to cause light‐induced degradation. We investigate mc‐LID sensitive PERC cells that show an efficiency degradation of 15%rel. The weaker degradation of the grain boundaries (GBs) typical for mc‐LID is identified and further investigated from front and rear side with respect to recombination activities. The combination of local electrical measurements (LBIC), target preparation (REM, FIB) and element analysis (EDX, TEM) unveil Cu‐containing precipitates at the rear side of the solar cells. They accumulate at grain boundaries and at the rear surface of the Si‐bulk material where the passivation stack is damaged. We conclude that Cu originates from the cell material and discuss its relation to mc‐LID.

LBIC mapping (EQE at fixed wavelength) of a degraded mc‐Si PERC cell from front and rear side results in qualitatively different appearance of GBs.  相似文献   


11.
Microcrystalline silicon and micromorph tandem solar cells   总被引:8,自引:0,他引:8  
“Micromorph” tandem solar cells consisting of a microcrystalline silicon bottom cell and an amorphous silicon top cell are considered as one of the most promising new thin-film silicon solar-cell concepts. Their promise lies in the hope of simultaneously achieving high conversion efficiencies at relatively low manufacturing costs. The concept was introduced by IMT Neuchatel, based on the VHF-GD (very high frequency glow discharge) deposition method. The key element of the micromorph cell is the hydrogenated microcrystalline silicon bottom cell that opens new perspectives for low-temperature thin-film crystalline silicon technology. According to our present physical understanding microcrystalline silicon can be considered to be much more complex and very different from an ideal isotropic semiconductor. So far, stabilized efficiencies of about 12% (10.7% independently confirmed) could be obtained with micromorph solar cells. The scope of this paper is to emphasize two aspects: the first one is the complexity and the variety of microcrystalline silicon. The second aspect is to point out that the deposition parameter space is very large and mainly unexploited. Nevertheless, the results obtained are very encouraging and confirm that the micromorph concept has the potential to come close to the required performance criteria concerning price and efficiency. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 1 July 1999  相似文献   

12.
The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper. Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6\%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.  相似文献   

13.
In the effort to increase the stable efficiency of thin film silicon micromorph solar cells, a silicon oxide based intermediate reflector (SOIR) layer is deposited in situ between the component cells of the tandem device. The effectiveness of the SOIR layer in increasing the photo‐carrier generation in the a‐Si:H top absorber is compared for p–i–n devices deposited on different rough, highly transparent, front ZnO layers. High haze and low doping level for the front ZnO strongly enhance the current density (Jsc) in the μc‐Si:H bottom cell whereas Jsc in the top cell is influenced by the angular distribution of the transmitted light and by the reflectivity of the SOIR related to different surface roughness. A total Jsc of 26.8 mA/cm2 and an initial conversion efficiency of 12.6% are achieved for 1.2 cm2 cells with top and bottom cell thicknesses of 300 nm and 3 μm, and without any anti‐reflective coating on the glass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (Voc) and short circuit current (Isc) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.  相似文献   

15.
The relation between current and illumination intensity of three structures of high‐efficiency back‐junction back‐contact silicon solar cells was analyzed. Both, n‐type cells with non‐diffused front surface and p‐type cell with floating n‐emitter show a pronounced non‐linearity due to strong illumination dependence of the passivation quality of the non‐diffused surface and the floating junction respectively. Quantum efficiency (QE) of this cell type drops significantly for the illumination lower than 0.5 suns. In contrast the QE of n‐type cells with n+‐front surface field (FSF) is linear. Low illumination current characteristics of all three of the analyzed structures could be well described by physical models. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Current density and output power of solar cells, respectively, made from different materials combinations: GaAsp(:Zn)/GaAsP(:Te)/GaAs-CVD GaAsp(:Zn)/GaAs(:Te)/GaAs-CVD GaAlAs(:Zn)/GaAs(:Si)-LPE Silicon,p onn (commercial grade) have been compared at increasing light levels, i.e. solar concentrations from 1 sun to 100 suns. A strongly super-linear increase in output (current density) is found for the ternary compound cells in agreement with earlier measurements. The faster rate of increase of the current with concentration in ternary compounds as compared to silicon can be explained by a trap-filling mechanism at higher injection levels. A Gaussian distribution of compensated donor states can explain the superlinear current increase.  相似文献   

17.
表面钝化对多晶硅绒面形貌的影响   总被引:2,自引:1,他引:1  
多晶硅表面制绒技术是太阳能光伏产业亟待突破的一个关键技术.本文根据多晶硅强酸制绒的基本原理,提出了表面活性剂钝化多晶硅表面以降低硅原子与酸反应速度从而改善多晶硅绒面形貌的方法.实验研究了不同含量的添加剂对酸液刻蚀多晶硅绒面形貌的影响,用扫描电镜观察对应的绒面结构,用积分反射仪测量其绒面的表面反射率.实验结果表明:加入活性剂后酸液能使多晶硅表面陷阱坑分布更加均匀,并且能有效消除产生漏电流的缺陷性深沟槽,样品表面反射率比较低,其表面反射率降低到21.5%.与传统酸液腐蚀的多晶硅绒面结构相比,陷阱坑密度明显增加,这种方法在多晶硅太阳电池的生产中是有价值的.  相似文献   

18.
The behavior of copper precipitation in cast multicrystalline silicon (mc-Si) annealed at different temperatures under air cooling (30 K/s) or slow cooling (0.3 K/s) was investigated by scanning infrared microscopy (SIRM). Comparing to Czochralski-grown silicon (Cz-Si), copper precipitated more easily in mc-Si, and the lowest temperature of copper precipitation in mc-Si was about 700 °C, lower than that in Cz-Si. It was also observed that copper preferably precipitated on grain boundaries so that near the grain boundaries the denuded zone formed. The results indicate that the defects including dislocations, grain boundaries and microdefects, as the heteronucleation sites, enhanced copper precipitation. Moreover, cooling rates had a great influence on the copper precipitation, especially at lower annealing temperatures. Generally air cooling led to the formation of high density of copper-precipitate colonies.  相似文献   

19.
A simple method for nano‐scale texturing of silicon surfaces based on local metal‐catalyzed wet chemical etching, which results in an almost complete suppression of reflectivity in a broad spectral range, has been successfully applied to produce black multi‐crystalline silicon solar cells. The performance of the cells is compared to that of reference cells without surface nano‐texturing. A considerable increase of the short circuit current (by 36–42% with respect to the reference cells) without deterioration of other performance parameters is observed under natural sun illumination. Means of further optimization of such black solar cells are discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Currently, triple‐junction solar cells realized from III–V semiconductor compounds hold the solar energy conversion efficiency world record. To improve the efficiency significantly, it is necessary to increase the number of junctions and to involve a sub‐cell with an absorber layer in the band gap range of 1 eV. For the realization of a stacked four‐junction device with optimised band gaps, we have grown InGaAsP/InGaAs tandem cells lattice matched to InP substrates, and investigated properties of the absorber bulk material. Time‐resolved photoluminescence of the low band gap In0.53Ga0.47As absorber embedded between InP barriers was measured. The InGaAs/GaAsSb tunnel diode structure used in the tandem has been processed into a separate device and IV curves were measured. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号