首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents the structural characterization of nanoclusters formed from a-Si:H/Ge heterostructures processed by rapid thermal annealing (RTA) at 1000 °C for annealing times varying between 30 s and 70 s. The a-Si:H layers were grown on electron cyclotron resonance (ECR) using SiH4 and Ar precursor gases. The Ge layer was grown in an e-beam evaporation system. The structural characterizations were performed by high-resolution X-ray diffractometer (HRXRD) on grazing incidence X-ray reflection mode (GIXRR) and micro-Raman measurements. The average grain size, Ge concentration (xGe) and strain were estimated from Lorentzian GIXRR peak fit. The average grain size varied from 3 nm to 7.5 nm and decreased with annealing time. The xGe increase with annealing time and varied from 8% to 19%, approximately. The strain calculated for (1 1 1), (2 2 0) and (3 1 1) peaks at 40 s, 50 s, 60 s and 70 s annealing time suggest the geometrical changes in nanoclusters according to process time.  相似文献   

2.
We reported the Ho:GdVO4 laser pumped by Tm-doped laser with a fiber Bragg grating. 2.03 W continuous-wave Ho:GdVO4 laser output power is obtained under 10.5 W incident pump power, with the optical-to-optical conversion efficiency and slope efficiency of 19.3% and 32.3%, respectively, at 7 °C. We can see that, the lower the temperature is, the better the laser output character is. The beam quality factor is M2 ∼ 1.29 measured by the traveling knife-edge method.  相似文献   

3.
In this work we have investigated the dependence of optical and electrical properties of RF sputtered undoped a-Si:H films and B or P doped a-Si:H films on hydrogen flow rate (FH). Low deposition temperature of 95 °C was used, a process compatible with low-cost plastic substrates. FTIR spectroscopy and ESR measurements were used for the investigation of Si-Hx bonding configurations, and concentrations of hydrogen and dangling bonds. We found that there is a strong correlation between the total hydrogen concentration, the dangling bonds density and the optoelectronic properties of the films. The best photosensitivity value was found to be 1.4 × 104 for the undoped films. The dark conductivity (σD) of the doped layers varied from 5.9 × 10−8 to 6.5 × 10−6 (Ω cm)−1 for different ratios FAr/FH. These variations are attributed to both the different B and P concentrations in the films (according to SIMS measurements) and the enhanced disorder of the films introduced by the large number of inactive impurities. The B doping efficiency is lower compared to the P one. A small photovoltaic effect is also observed in n-i-p solar cells fabricated on polyimide (PI) substrates having ITO as antireflective coating, with an efficiency of 1.54%.  相似文献   

4.
Surface phase diagram of recently proposed GaAs(0 0 1)-(2 × 4)γ is systematically investigated by using our ab initio-based approach. We focus on the (4 × 7) domain consisting of c(4 × 4)-like and (2 × 4)-like regions to clarify surface dimer constituents as functions of temperature T and As (As2 and As4) pressure pAs by comparing chemical potentials of surface dimers in the vapor phase with that on the surface. The calculated results under As4 imply that Ga dimers in the c(4 × 4)-like region tend to become stable with increase of temperature and appear at the conventional growth condition such as T ∼ 800 K and pAs ∼ 10−6 Torr, while the (2 × 4)-like region favors As dimers. This is consistent with temperature dependence of change in surface dimer constituents on the c(4 × 4) and (2 × 4)β2 clarified in our previous study. Furthermore, the surface phase transition from the c(4 × 4) to (2 × 4)β2 via (2 × 4)γ is discussed on the basis of the phase diagram obtained in this study.  相似文献   

5.
We report the results of growth kinetics of oxidation process on niobium thin film surfaces exposed to air at room temperature by using a surface sensitive non-destructive X-ray reflectivity technique. The oxidation process follows a modified Cabrera-Mott model of thin films. We have shown that the oxide growth is limited by the internal field due to the contact potential which develops during the initial stage of oxidation. The calculated contact potential for 100 and 230 Å thick films is 0.81 ± 0.14 and 1.20 ± 0.11 V respectively. We report that 40% increase in the contact potential increases the growth rate for the first few mono layers of Nb2O5 from ∼2.18 to ∼2790 Å/s. The growth rates of oxidation on these samples become similar after the oxide thicknesses of ∼25 Å are reached. We report on the basis of our studies that a protective layer should be grown in situ to avoid oxidation of Nb thin film surface of Nb/Cu cavities.  相似文献   

6.
Polycrystalline Zn1−xNixO diluted magnetic semiconductors have been successfully synthesized by an auto-combustion method. X-ray diffraction measurements indicated that the 5 at% Ni-doped ZnO had the pure wurtzite structure. Refinements of cell parameters from powder diffraction data revealed that the cell parameters of Zn0.95Ni0.05O were a little bit larger than ZnO. Transmission electron microscopy observation showed that the as-synthesized powders were of the size ∼60 nm. Magnetic investigations showed that the nanocystalline Zn0.95Ni0.05O possessed room temperature ferromagnetism with the saturation magnetic moment of 0.1 emu/g (0.29 μB/Ni2+).  相似文献   

7.
Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 °C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO2, the influence of the temperature (700-950 °C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has SBET of 741 m2 g−1, Vmi of 0.39 cm3 g−1 and a iodine retention capacity of 429.3 mg g−1): carbon C (gasification with CO2 at 850 °C during 1 h), with SBET of 523 m2 g−1, Vmi of 0.33 cm3 g−1 and a iodine retention capacity of 402.5 mg g−1, and carbon D (gasification with CO2 at 900 °C during 1 h), whose SBET is 672 m2 g−1, Vmi is 0.28 cm3 g−1 and has a iodine retention capacity of 345.2 mg g−1.  相似文献   

8.
The crystal structure, magnetic and magnetotransport properties of the variation of B′-site transition metal in Sr2FeMO6 (M=Mo, W) with double perovskites structure have been investigated systematically. Measurements of magnetization vs. temperature at H=5 T show that Sr2FeMoO6 is a ferromagnet and Sr2FeWO6 is an antiferromagnet with TN∼35 K. Additionally, the large magnetoresistance ratio (MR) of ∼22% (H=3 T) at room temperature (RT) was observed in the Sr2FeWO6 compound. However, the Sr2FeMoO6 compound did not show any significant MR even at high fields and RT (MR∼1%; H=3 T and 300 K). The implications of these findings are supported by band structure calculations to explain the interaction between the 4d(Mo) and 5d(W) orbitals of transition metal ions and oxygen ions.  相似文献   

9.
High saturation magnetization soft magnetic FeCo (=Fe65Co35) films were prepared using a thin Co underlayer. The FeCo/Co films exhibited a well-defined in-plane uniaxial anisotropy with easy axis coercivity (Hce) of 10 Oe and hard axis coercivity (Hch) of 3 Oe, and a half reduction of Hc with Hce=4.8 Oe and Hch=1.0 Oe was obtained when the composition was adjusted to 25 at% Co. The effective permeability of the films remains flat around 250 to 800 MHz. The saturation magnetostriction was 5.2×10−5 and the intrinsic stress was 0.8 GPa in FeCo single layer, both were slightly reduced by Co underlayer. The Co underlayer changed the preferred orientation of the FeCo films from (2 0 0) to (1 1 0) but more significantly, reduced the average grain size from ∼74 to ∼8.2 nm. It also reduced the surface roughness from 2.351 to 0.751 nm. The initial stage and interface diffusion properties were examined by TEM and XPS.  相似文献   

10.
The aim of this study was to determine nHA/PMMA composites (H/P) in an optimal ratio with improved cytocompatibility as well as valid physical properties for provisional dental implant restoration. 20 wt.%, 30 wt.%, 40 wt.% and 50 wt.% H/P were developed and characterized using XPS, bending strength test and SEM. Human gingival fibroblasts cultured in extracts or directly on sample discs were investigated by fluorescent staining and MTT assay. Chemical integration in nHA/PMMA interface was indicated by XPS. Typical fusiform cells with adhesion spots were detected on H/P discs. MTT results also indicated higher cell viability in 30 wt.% and 40 wt.% H/P discs (P < 0.05). We conclude that nHA addition to PMMA enhances cytocompatibility and the optimal nHA/PMMA ratio for provisional fixed crowns (PFC) is 0.4:1.  相似文献   

11.
We report a compact, conduction-cooled, highly efficient, continuous wave (CW) Nd:YAG slab laser in diode-side-pumped geometry. To achieve high efficiency, a novel laser head for Nd:YAG slab has been developed. For an absorbed pump power of 27.6 W, maximum output power of 10.4 W in multimode and 8.2 W in near-diffraction-limited beam quality has been obtained. Slope and optical-to-optical conversion efficiencies are 45.3% and 37.7% in multimode with beam quality factors (M2) in x and y directions equal to 32 and 8, respectively. TEM00 mode operation was achieved in a hybrid resonator with slope and optical-to-optical conversion efficiencies of 43.2% and 29.7%, respectively. Beam quality factors in x and y directions are ?1.5 and ?1.6 for the whole output power range. The laser radiation was linearly polarized and polarization contrast ratios are >1200:1 in the multimode and 1800:1 in the TEM00 mode operation. In passive Q-switching with Cr4+:YAG crystal of 68% initial transmission, 18 ns pulsewidth has been achieved with an average power of 2 W at a repetition rate of 16 kHz.  相似文献   

12.
Thin nano-structured carbon films have been deposited in vacuum by pulsed laser ablation, from a rotating polycrystalline graphite target, on Si 〈1 0 0〉 substrates, kept at temperatures ranging from RT to 800 °C. The laser ablation was performed by a Nd:YAG laser, operating in the near IR (λ = 1064 nm).X-ray diffraction analysis, performed at grazing incidence angle, both in-plane (ip-gid) and out-of-plane (op-gid), has shown the growth of oriented nano-sized graphene particles, characterised by high inter-planar stacking distance (d? ∼ 0.39 nm), compared to graphite. The film structure and texturing are strongly related both to laser wavelength and substrate temperature: the low energy associated to the IR laser radiation (1.17 eV) generates activated carbon species of large dimensions that, also at low T (∼400 °C), easy evolve toward more stable sp2 aromatic bonds, in the plume direction. Increasing temperature the nano-structure formation increases, causing a further aggregation of aromatic planes, voids formation, and a related density (by X-ray reflectivity) drop to very low values. SEM and STM show for these samples a strongly increased macroscopic roughness. The whole process, mainly at higher temperatures, is characterised by a fast kinetic mode, far from equilibrium and without any structural or spatial rearrangement.  相似文献   

13.
Dielectromagnetics made from organic–inorganic hybrid silica-coated iron powders were characterised by determination of their physical, mechanical and magnetic properties. The influence of three main factors, dielectric composition, addition level and heat treatment conditions were investigated. Results showed that these factors have significant effects on the performance of the dielectromagnetics. Increase in the organic phase content in these dielectric coatings tends to increase both the electrical resistivity and magnetic permeability of dielectromagnetics, although the strength and density are slightly impaired. Increasing the coating thickness leads to improvements in resistivity and thus reduced eddy current losses, but these are offset by reductions in density, strength and particularly magnetic permeability. A hybrid organic–inorganic coating formulation based on 40 mol% MTMS and 60 mol% TEOS precursors was found to be the optimum composition investigated. Addition levels between 0.1% and 0.3% were found to offer a good compromise between maximum permeability (μmax>400) and minimum loss (typically <8 W/kg) for operation at 50 Hz/1 T, and the system can be optimised within this range for the desired performance.  相似文献   

14.
Laser scribing process of in-house textured gallium-doped zinc oxide (GZO) is optimized, aiming to improve the performance of amorphous silicon (a-Si:H) photovoltaic (PV) modules. The reasons for different scribing quality of textured GZO and SnO2:F scribed at 1064 nm with pulse duration of 40 ns were analyzed. Apart from separation resistance, quality of the scribed lines was evaluated by laser scan microscopy from three-dimensional images. Other types of lasers, such as laser with shorter pulse duration, laser at 355 nm and laser with Gaussian-to-tophat converter, were used to smooth the edges and flatten the bottoms of the scribed lines. The proper laser scribing realizes the advantages of textured GZO films used as front contacts in PV modules. A short-circuit current density of 14.3 mA/cm2 and an initial aperture area efficiency of 8.8% were obtained on 16 cm × 16 cm textured GZO coated glass scribed at 355 nm with pulse duration of 40 ns.  相似文献   

15.
A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr4+:YAG laser and its efficient intracavity frequency-doubling to 456 nm deep-blue laser were demonstrated in this paper. Using a simple V-type laser cavity, pulsed 912 nm laser characteristics were investigated with two kinds of Cr4+:YAG crystal as the saturable absorbers, which have the different initial transmissivity (TU) of 95% and 90% at 912 nm. When the TU = 95% Cr4+:YAG was used, as much as an average output power of 2.8 W 912 nm laser was achieved at an absorbed pump power of 34.0 W, and the pulse width and the repetition rate were ∼ 40.5 ns and ∼ 76.6 kHz, respectively. To the best of our knowledge, this is the highest average output power of diode-pumped passively Q-switched Nd3+-doped quasi-three-level laser. Employing a BiBO as the frequency-doubling crystal, 456 nm pulsed deep-blue laser was obtained with a maximum average output power of 1.2 W at a repetition rate ∼ 42.7 kHz.  相似文献   

16.
Raman spectra, atomic force microscope (AFM) images, hardness (H) and Young's modulus (E) measurements were carried out in order to characterize carbon thin films obtained from a C60 ion beam on silicon substrates at different deposition energies (from 100 up to 500 eV). The mechanical properties were studied via the nanoindentation technique. It has been observed by Raman spectroscopy and AFM that the microstructure presents significant changes for films deposited at energies close to 300 eV. However, these remarkable changes have not been noticeable on the mechanical properties: apparently H and E increase with higher deposition energy up to ∼11 and ∼116 GPa, respectively. These values are underestimated if the influence of the film roughness is not taken into account.  相似文献   

17.
Using composition-spread technique, we have grown metastable Mg1−xCaxO solid solution films on ZnO layers by pulsed laser deposition. All the films exhibited (1 1 1) oriented cubic phase. Despite a large miscibility gap, no phase separation took place at growth temperatures up to 700 °C, whereas an optimal growth temperature was found at 400 °C in terms of the crystallinity. The composition-spread films were characterized by X-ray diffraction mapping technique. Both lattice parameters and diffraction intensity increased with increasing the CaO composition. The present isovalent heterointerfaces realized the perfect lattice-matching by properly adjusting the CaO composition, leading to particular interest for ZnO based field effect transistors.  相似文献   

18.
Magnesium is one of the most important bivalent ions associated with biological apatite. A series of magnesium-substituted calcium apatite coatings (Ca10−xMgx)(PO4)6(OH)2, where x = 0, 0.50, 1.00, 1.50 and 2.00, are synthesized onto Ti6Al4V substrate by sol-gel dip-coating method to determine how magnesium influences the synthesis and the resulting structural and biological properties. X-ray diffraction (XRD) analysis shows that the incorporation of magnesium helps formation of Mg-containing β-TCP (β-TCMP) phase. X-ray photoelectron spectroscopy (XPS) is used to study the chemical composition and the results show that the apatite structure can only host magnesium less than ∼2.4 wt.% beyond which magnesium aggregates on the surfaces. The incorporation of magnesium slows down the dissolution of Ca2+ from the coating. The in vitro behavior of the coatings is evaluated with human osteosarcoma MG63 cells for cell morphology and proliferation. Similar cell morphologies are observed on all coatings. The cell proliferation results show that the incorporation of magnesium up to x = 2 has no adverse effect on cell growth.  相似文献   

19.
20.
Glass ceramics of the composition xZnO·25Fe2O3·(40−x)SiO2·25CaO·7P2O5·3Na2O were prepared by the melt-quench method using oxy-acetylene flame. Glass-powder compacts were sintered at 1100 °C for 3 h and then rapidly cooled at −10 °C. X-ray diffraction (XRD) revealed 3 prominent crystalline phases: ZnFe2O4, CaSiO3 and Ca10(PO4)6(OH)2. Vibrating sample magnetometer (VSM) data at 10 KOe and 500 Oe showed that saturation magnetization, coercivity and hence hysteresis area increased with the increase in ZnO content. Nano-sized ZnFe2O4 crystallites were of pseudo-single domain structure and thus coercivity increased with the increase in crystallite size. ZnFe2O4 exhibited ferrimagnetism due to the random distribution of Zn2+ and Fe3+ cations at tetrahedral A sites and octahedral B sites. This inversion/random distribution of cations was probably due to the surface effects of nano-ZnFe2O4 and rapid cooling of the material from 1100 °C (thus preserving the high temperature state of the random distribution of cations). Calorimetric measurements were carried out using magnetic induction furnace at 500 Oe magnetic field and 400 KHz frequency. The data showed that maximum specific power loss and temperature increase after 2 min were 26 W/g and 37 °C, respectively for the sample containing 10% ZnO. The samples were immersed in simulated body fluid (SBF) for 3 weeks. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDX) and XRD results confirmed the growth of precipitated hydroxyapatite phase after immersion in SBF, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to the living tissues in physiological environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号