首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
Much of the research effort concerning the nanoscopic properties of clays has focused on its mechanical applications, for example, as nanofillers for polymer reinforcement. To broaden the horizon of what is possible by exploiting the richness of clays in nanoscience, herein we report a bottom‐up approach for the production of hybrid materials in which clays act as the structure‐directing interface and reaction media. This new method, which combines self‐assembly with the Langmuir–Schaefer technique, uses the clay nanosheets as a template for the grafting of C60 into a bi‐dimensional array, and allows for perfect layer‐by‐layer growth with control at the molecular level. In contrast to the more‐common growth of C60 arrays through nanopatterning, our approach can be performed under atmospheric conditions, can be upscaled to areas of tenths of cm2, and can be applied to almost any hydrophobic substrate. Herein, we report a detailed study of this approach by using temperature‐dependent X‐ray diffraction, spectroscopic measurements, and STM.  相似文献   

2.
Enthalpies of adsorption, ΔH(a), are reported for several light hydrocarbons on normal construction concrete. ΔH(a), which are a measure of the adhesion strength of a molecule on a surface, were determined by gas-solid chromatography with a packed column containing 60-80 mesh concrete particles. With this approach, the specific retention volume for a compound is measured as a function of temperature, and these data are used to calculate ΔH(a). For the hydrocarbons studied, we found that ΔH(a) was relatively large for unsaturated hydrocarbons. These are the first determinations of ΔH(a) of hydrocarbons on construction concrete, but useful comparisons with other ionic solids such as clays can be made.  相似文献   

3.
We theoretically investigated the stability of highly charged C(60) (z+) cations produced from C(60) with an ultrashort intense laser pulse of lambda approximately 1800 nm. We first calculated the equilibrium structures and vibrational frequencies of C(60) (z+) as well as C(60). We then calculated key energies relevant to dissociation of C(60) (z+), such as the excess vibrational energy acquired upon sudden tunnel ionization from C(60). By comparing the magnitudes of the calculated energies, we found that C(60) (z+) cations up to z approximately 12 can be produced as a stable or quasistable (microsecond-order lifetime) intact parent cation, in agreement with the recent experimental report by V. R. Bhardwaj et al. [Phys. Rev. Lett. 93, 043001 (2004)] that almost only intact parent C(60) (z+) cations up to z=12 are detected by a mass spectrometer. The results of Rice-Ramsperger-Kassel-Marcus calculation suggest that the lifetime of C(60) (z+) drastically decreases by ten orders of magnitude as z increases from z=11 to z=13. Using the time-dependent adiabatic state approach, we also investigated the vibrational excitation of C(60) and C(60) (z+) by an intense near-infrared pulse. The results indicate that large-amplitude vibration with energy of >10 eV is induced in the delocalized h(g)(1)-like mode of C(60) (z+).  相似文献   

4.
We report on the vibrational fingerprint of single C(60) terminated molecules in a mechanically controlled break junction (MCBJ) setup using a novel statistical approach manipulating the junction mechanically to address different molecular configurations and to monitor the corresponding vibrational modes. In the IETS spectra, the vibrations of the anchoring C(60) dominate the spectra; thus information on the unit anchored with C(60) to the electrodes is masked by the modes arising from the anchoring groups. However, we have identified the additional modes from the fluorene backbone optically.  相似文献   

5.
《中国化学快报》2020,31(9):2447-2451
Facile achievement of gold nanorods (AuNRs) with controllable longitudinal surface plasmon resonance (LSPR) is of great importance for their applications in various fields. The LSPR of AuNRs is sensitive to their aspect ratio, which is still hard to be precisely tuned by direct synthesis. In this work, we report a simple approach for end-selective etching of AuNRs by a rapid oxidation process with Au(III) in cetyltrimethylammonium bromide (CTAB) solution at a mild temperature. The LSPR wavelength and the length of AuNRs blue shifted linearly as a function of the amount of Au(III), while the diameter of AuNRs remained nearly constant. The oxidative rate is temperature dependent, and the oxidative process for a desired LSPR can be accomplished within 15 min at 60 °C. Further investigations indicated that Br determine the occurrence of the oxidation between AuNRs and Au(III), and a small amount of surfactant chain (CTA+) is crucial for stabilizing AuNRs. This method presents a quick but robust strategy for acquiring AuNRs with an arbitrary intermediate LSPR wavelength using the same starting AuNRs, and can be a powerful tool for subsequent applications.  相似文献   

6.
A SiC nanomesh is used as a nanotemplate to direct the epitaxy of C60 molecules. The epitaxial growth of C60 molecules on SiC nanomesh at room temperature is investigated by in situ scanning tunneling microscopy, revealing a typical Stranski-Krastanov mode (i.e., for the first one or two monolayers, it is a layer-by-layer growth or 2-D nucleation mode; at higher thicknesses, it changes to island growth or a 3-D nucleation mode). At submonolayer (0.04 and 0.2 ML) coverage, C60 molecules tend to aggregate to form single-layer C60 islands that mainly decorate terrace edges, leaving the uncovered SiC nanomesh almost free of C60 molecules. At 1 ML C60 coverage, a complete wetting layer of hexagonally close-packed C60 molecules forms on top of the SiC nanomesh. At higher coverage from 4.5 ML onward, the C60 stacking adopts a (111) oriented face-centered-cubic (fcc) structure. Strong bright and dim molecular contrasts have been observed on the first layer of C60 molecules, which are proposed to originate from electronic effects in a single-layer C60 island or the different coupling of C60 molecules to SiC nanomesh. These STM molecular contrast patterns completely disappear on the second and all the subsequent C60 layers. It is also found that the nanomesh can be fully recovered by annealing the C60/SiC nanomesh sample at 200 degrees C for 20 min.  相似文献   

7.
In this work, we describe the insertion of a water-soluble bisadduct fulleropyrrolidine derivative into the interlayer space of three layered smectite clays. The composites were characterized by a combination of powder X-ray diffraction, transmission electron microscopy, X-ray photoemission and FTIR spectroscopies, and laser flash photolysis measurements. The experiments, complemented by computer simulations, give insight into the formation process, structural details, and properties of the fullerene/clay nanocomposites. The reported composite materials constitute a new hybrid system, where C(60) differs from its crystals or its solutions, and open new perspectives for the design and construction of novel C(60)-based organic/clay hybrid materials.  相似文献   

8.
Carbide-based electrocatalysts are superior to traditional carbon-based electrocatalysts, such as the commercial Pt/C electrocatalysts, in terms of their mass activity and stability. Herein, we report a general approach for the preparation of a nanocomposite electrocatalyst of platinum and vanadium carbide nanoparticles that are loaded onto graphitized carbon. The nanocomposite, which was prepared in a localized and controlled fashion by using an ion-exchange process, was an effective electrocatalyst for the oxygen-reduction reaction (ORR). Both the stability and the durability of the Pt-VC/GC nanocomposite catalyst could be enhanced compared with the state-of-the-art Pt/C. This approach can be extended to the synthesis of other metal-carbide-based nanocatalysts. Moreover, this straightforward synthesis of high-performance composite nanocatalysts can be scaled up to meet the requirements for mass production.  相似文献   

9.
Differential thermal analysis (DTA) was the first thermal analysis technique used to qualitatively characterize natural clays and respective curves has been used since more than 60 years as their ‘fingerprint’. With the development of microprocessed equipments in the last decades, derivative thermogravimetric (DTG) curves also may be used for this purpose in some cases, which also may allow a quantitative characterization of clay components. TG and DTG curves are more indicated than DTA or DSC curves to identify and to better analyze the several decomposition steps of natural or synthetic organoclays. These questions are discussed in applications developed to characterize Brazilian kaolinitic clays, bentonites and organophilic clays.  相似文献   

10.
Here we report the first documented synthesis of a periodic mesoporous organosilica (PMO), that contains a multiply bonded C60 moiety integrated into the silica channel walls of the material, dubbed C60-PMO. This is accomplished through the acid-catalyzed co-assembly, of C60(NHCH2CH2CH2Si(OEt)3)x and tetraethylorthosilicate (TEOS) with a polyethyleneoxide-polylpropyleneoxide-polyethyleneoxide triblock copolymer template. The percentage of C60 in the final material was estimated to be a minimum of 63 vol %, but potentially as high as 91 vol %. The effects of the synthesis conditions on the mesostructure of the resulting materials are examined. In particular, we demonstrate that the C60 is uniformly distributed throughout the entire sample by the use of energy dispersive X-ray fluorescence (EDX) analysis and an OsO4 label bonded to the C60.  相似文献   

11.
We report in this article a comprehensive investigation of the viscoelastic behavior of different natural colloidal clay minerals in aqueous solution. Rheological experiments were carried out under both dynamic and steady-state conditions, allowing us to derive the elasticity and yield stress. Both parameters can be renormalized for all sizes, ionic strength, and type of clay using in a first approach only the volume of the particles. However, applying such a treatment to various clays of similar shapes and sizes yields differences that can be linked to the repulsion strength and charge location in the swelling clays. The stronger the repulsive interactions, the better the orientation of clay particles in flows. In addition, a master linear relationship between the elasticity and yield stress whose value corresponds to a critical deformation of 0.1 was evidenced. Such a relationship may be general for any colloidal suspension of anisometric particles as revealed by the analysis of various experimental data obtained on either disk-shaped or lath- and rod-shaped particles. The particle size dependence of the sol-gel transition was also investigated in detail. To understand why suspensions of larger particles gel at a higher volume fraction, we propose a very simplified view based on the statistical hydrodynamic trapping of a particle by an another one in its neighborhood upon translation and during a short period of time. We show that the key parameter describing this hydrodynamic trapping varies as the cube of the average diameter and captures most features of the sol-gel transition. Finally, we pointed out that in the high shear limit the suspension viscosity is still closely related to electrostatic interactions and follows the same trends as the viscoelastic properties.  相似文献   

12.
Surface nanotemplate-assisted molecular assembly offers great potential in the "bottom-up" construction of addressable molecular architectures for device miniaturization. Here, we report the fabrication of an extended 2D C60 nanomesh featuring a well-ordered nanocavity array by controlling the binary molecular phases of C60 and pentacene on Ag(111). Using low-temperature scanning tunneling microscopy, we demonstrate that the C60 nanomesh can serve as an effective template to selectively accommodate guest C60 molecules at the cavity sites, thereby leading to the formation of an ordered 2D C60 array.  相似文献   

13.
We report a convenient and simple solution-phase electron-transfer reaction of C(60) with zinc and alpha-bromoacetonitrile, alpha-bromo acetate esters, allyl bromide, benzyl bromide and alpha-bromo ketones in DMF, with which different types of monoalkylated C(60) derivatives can be prepared. When this method is employed with C(70), 2-carbomethoxymethyl-1,2-dihydro[70]fullerene (isomer 5a) is produced as one of the two 1,2-monoalkylated C(70) isomers, together with the first 5,6-monoalkylated C(70) derivative.  相似文献   

14.
Here we report on the characteristics of fullerol in aqueous systems and examine those conditions that affect the physical state of fullerol in water. When dispersed in water fullerol forms polydisperse suspensions characterized by both small ( approximately 100 nm) and large associations (>500 nm). These clusters are charged with a point of zero net proton charge (PZNPC) of approximately pH 3. Though the size of fullerol clusters may be manipulated through changes in solution chemistry, principally pH, cluster formation cannot be entirely prevented through these means alone. The fullerol cluster structure is amorphous as revealed by X-ray diffraction analysis, which is in contrast to clusters of C(60) formed through dissolution in toluene and then introduced into water through sonication (SONnC(60)). The SONnC(60) clusters are crystalline with a structure similar to that of unreacted C(60) crystals.  相似文献   

15.
We report a novel and versatile method for constructing a supramolecular nanosphere and nanonetwork based on isotactic and syndiotactic C60-end-capped poly(methyl methacrylate)s (it- and st-PMMA-C60's) through their stereocomplex formation combined with self-assembly of the terminal C60. The stereoregular PMMA-C60's with a precisely controlled structure including molecular weight, its distribution, tacticity, and the chain-end structure were synthesized by the stereospecific anionic living polymerizations of methyl methacrylate followed by end-capping with C60, and their structures were proven by size exclusion chromatography, NMR, UV-vis, and MALDI-TOF-MS analyses. The stereoregular PMMA-C60's self-assembled to form a core-shell aggregate with C60 as the core and the PMMA chains as the shell in H2O/CH3CN (1/9, v/v) due to the solvophobic interaction of the C60 units. These it- and st-PMMA-C60 aggregates further supramolecularly assembled through iterative stereocomplex formation into nanonetworks in which the self-assembled C60 clusters were robustly connected with two- and three-dimensional arrangements. In addition, when the it- and st-PMMA-C60's were simultaneously mixed, self-assembly of the C60 units and stereocomplex formation of the it- and st-PMMA chains took place at once, resulting in the formation of uniformly sized spherical nanoparticles with resistance to heat. Similar nanonetwork architectures can be produced using it-PMMA-C60 clusters and st-PMMA prepolymers as the binder.  相似文献   

16.
Novel thermodynamically stable supramolecular donor-acceptor dyads have been synthesized. In particular, we assembled successfully C(60), as an electron acceptor, with the strong electron donor TTF through a complementary guanidinium-carboxylate ion pair. Two strong and well-oriented hydrogen bonds, in combination with ionic interactions, ensure the formation of stable donor-acceptor dyads. The molecular architecture has been fine-tuned by using chemical spacers of different lengths (i.e., phenyl versus biphenyl) and functional groups (i.e., ester versus amide), thus providing meaningful incentives to differentiate between through-bond and through-space electron-transfer scenarios. In electrochemical studies, both the donor and acceptor character of the TTF and C(60) units, respectively, have been clearly identified. Steady-state and time-resolved emission studies, however, show a solvent-dependent fluorescence quenching in C(60)*TTF dyads as well as the formation of the C(60)(*)(-)*TTF(*)(+) radical ion pairs, for which we determined lifetimes that are in the range of hundred of nanoseconds to microseconds. The complex network that connects C(60) with TTF in the dyads and the flexible nature of the spacer result in through-space electron-transfer processes. This first example of electron transfer in C(60)-based dyads, connected by strong hydrogen bonds, demonstrates that this approach can add outstanding benefits to the construction of artificial photosynthetic systems that bear a closer resemblance to the natural one.  相似文献   

17.
The development of concentration (membrane) potential upon step-wise change in salt concentration has been studied for diaphragms made of various strongly compacted clays (montmorillonite, illite, kaolinite) equilibrated with 0.1 M NaCl solution. Porous ceramic filters were used to confine the clays mechanically to be able to achieve high extent of compaction (dry density approximately 2000 kg/m3). A theoretical analysis has revealed that the relaxation pattern is primarily controlled by the properties of porous filters and only slightly depends on the clay properties. At the same time, quasi-stationary values of concentration potential are directly related to the electrochemical perm-selectivity of clay. This property has revealed considerable differences in the electrochemical behaviour of various clays used in this study. This has been attributed to the differences in the micro-structure of clays, in particular to the existence or nonexistence of the so-called interlayer water where cations may retain some mobility. It has also been shown that in clays with high electrochemical perm-selectivity, one can expect a strong increase in the diffusivity of cationic radio-tracers with decreasing ionic strength of equilibrium electrolyte solution. At the same time, low electrochemical perm-selectivity means no noticeable dependence of this kind. The correctness of this observation has been corroborated by the comparison of our findings with the literature data on the diffusion of cationic radio-tracers through compacted montmorillonite (high perm-selectivity) and kaolinite (low perm-selectivity). To check the self-consistency of our approach, we have also carried out sample measurements of diffusion of cationic and anionic radio-tracers through compacted illite. It has been found that the measured effective diffusion coefficients were in excellent agreement with the electrochemical perm-selectivity estimated for this clay from the measurements of concentration potential.  相似文献   

18.
Thermal analysis of some sericite clays, from several deposits in Spain, which are not exploited at this time, has been studied. The samples have been previously characterized by mineralogical and chemical analysis. Sericite clays have interesting properties, with implications in ceramics and advanced materials, in particular concerning the formation of mullite by heating. According to this investigation by differential thermal and thermogravimetric analysis (DTA-TG), the sericite clay samples can be classified as: Group (I), sericite–kaolinite clays, with high or medium sericite content, characterized by an endothermic DTA peak of dehydroxylation of kaolinite with mass loss, which overlapped with dehydroxylation of sericite, and Group (II), sericite–kaolinite–pyrophyllite clays, with broader endothermic DTA peaks, in which kaolinite is dehydroxylated first and later sericite and pyrophyllite with the main mass loss, appearing the peaks overlapped. X-ray diffraction analysis of the heated sericite clay samples evidenced the decomposition of dehydroxylated sericite and its disappearance at 1050 °C, with formation of mullite, the progressive disappearance of quartz and the formation of amorphous glassy phase. The vitrification temperature is ~ 1250 °C in all these samples, with slight variations in the temperatures of maximum apparent density (2.41–2.52 g mL?1) in the range 1200–1300 °C. The fine-grained sericite content and the presence of some mineralogical components contribute to the formation of mullite and the increase in the glassy phase by heating. Mullite is the only crystalline phase detected at 1400 °C with good crystallinity. SEM revealed the dense network of rod-shaped and elongated needle-like mullite crystals in the thermally treated samples. These characteristics are advantageous when sericite clays are applied as ceramic raw materials.  相似文献   

19.
Carbide‐based electrocatalysts are superior to traditional carbon‐based electrocatalysts, such as the commercial Pt/C electrocatalysts, in terms of their mass activity and stability. Herein, we report a general approach for the preparation of a nanocomposite electrocatalyst of platinum and vanadium carbide nanoparticles that are loaded onto graphitized carbon. The nanocomposite, which was prepared in a localized and controlled fashion by using an ion‐exchange process, was an effective electrocatalyst for the oxygen‐reduction reaction (ORR). Both the stability and the durability of the Pt‐VC/GC nanocomposite catalyst could be enhanced compared with the state‐of‐the‐art Pt/C. This approach can be extended to the synthesis of other metal‐carbide‐based nanocatalysts. Moreover, this straightforward synthesis of high‐performance composite nanocatalysts can be scaled up to meet the requirements for mass production.  相似文献   

20.
Selective syntheses of novel polyether fullerene multiple adducts   总被引:1,自引:0,他引:1  
We have applied a modified macrocyclic tether approach to control multiple additions to C60. The technique of 3He NMR was used to confirm the selective formation of specific C60 multiple adducts by the macrocyclic tether approach. An oligoglycol was used as a flexible linker to produce macrocyclic polyether-linked malonates 5, 6, 8, and 9 under solid-liquid PTC (phase-transfer-catalysis) conditions. The formation of a single C60 tris-adduct, 3, from macrocyclic malonate 1 and 3He@C60 was proven by 3He NMR. Similarly, multiple additions to C60 of macrocyclic polyether malonate 5 gave C60 bis-adduct 10 selectively, while the reaction of C60 with macrocyclic malonate 8 gave bis-adducts 11 and 12. A similar process with macrocyclic malonate 6 gave tris-adduct 13 with high selectivity as well. Saponification of these C60 multiple adducts gives the corresponding polyacids that are potentially useful in biological applications. Macrocyclic polyether fullerenes are a new class of ionophores, which could be interesting for molecular recognition and for the development of biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号