首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new [C2H6O]+˙ ions have been generated in the gas phase by appropriate dissociative ionizations and characterized by means of their metastable and collisionally induced fragmentations. The heats of formation, ΔHf0, of the two ions which were assigned the structures [CH3O(H)CH2]+˙ and [CH3CHOH2]+˙ could not be measured. The third isomer, to which the structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = \mathop {\rm C}\limits^{\rm .} {\rm H} \cdot \cdot \cdot \mathop {\rm H}\limits^ + \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} is tentatively assigned, was measured to have ΔHf0 = 732±5 kJ mol?1, making it the [C2H6O]+˙ isomer of lowest experimental heat of formation. It was found that the exothermic ion–radical recombinations [CH2OH]++CH3˙→[CH3O(H)CH2]+˙ and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm + } {\rm HOH + H}^{\rm .} $\end{document}→[CH3CHOH2]+˙ have large energy barriers, 1.4 and ?0.9 eV, respectively, whereas the recombinations yielding [CH3CH2OH]+˙ have little or none.  相似文献   

2.
Evidence is presented for the gas phase generation of at least eight stable isomeric [C2H7O2]+ ions. These include energy-rich protonated peroxides (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_2 {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (e), \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm (H)OH} $\end{document} (f) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm (H)CH}_{\rm 3} {\rm (g)),} $\end{document} (g)), proton-bound dimers (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm 3} \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} (h) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH2 = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm + } \cdot \cdot \cdot {\rm HOCH}_{\rm 3} $\end{document} (i)) and hydroxy-protonated species (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} {\rm (OH)CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} (a), $\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH(OH)}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (b) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm OCH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (c)). The important points of the present study are (i) that these ions are prevented by high barriers from facile interconversion and (ii) that both electron-impact- and proton-induced gas phase decompositions seem to proceed via multistep reactions, some of which eventually result in the formation of proton-bound dimers.  相似文献   

3.
The structure and decomposition of the [C7H7]+ ions produced by electron-impact from o-, m- and p-chlorotoluene, o-, m- and p-bromotoluence, and p-iodotoluence, have been investigated. By determining the relative abundance of normal and metastable ions, these [C7H7]+ ions at electron energy of 20 eV are shown to be so-called ‘tropylium ions’. The amount of the internal energy of the [C7H7]+ ion estimated by the relative ion abundance ratios, ? [C5H5]+/[C7H7]+ and m*/[C7H7]+ for the decomposition \documentclass{article}\pagestyle{empty}\begin{document}$ [{\rm C}_{\rm 7} {\rm H}_{\rm 7}]^ + \mathop \to \limits^{m^* } [{\rm C}_{\rm 5} {\rm H}_{\rm 5}]^ + + {\rm C}_{\rm 2} {\rm H}_{\rm 2} $\end{document}, is in the order iodotoluene > bromotoluene > chlorotoluene. The heats of formation of the activated complexes for the reaction \documentclass{article}\pagestyle{empty}\begin{document}$ [{\rm C}_{\rm 7} {\rm H}_{\rm 7}]^ + \mathop \to \limits^{m^* } [{\rm C}_{\rm 5} {\rm H}_{\rm 5}]^ + + {\rm C}_{\rm 2} {\rm H}_{\rm 2} $\end{document} were estimated. The values suggest that the decomposing [C7H7]+ ions from various halogenotoluenes are identical in structure.  相似文献   

4.
Pure [CH2CHCH2]+ and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{C}}\limits^{\rm{ + }} = {\rm{CH}}_{\rm{2}} $\end{document} ions are generated only in metastable fragmentations of [CH2?CHCH2X]+˙, X=Cl, Br, I, and [CH3CX?CH2]+˙, X=Br, I, respectively. For ion source generated [C3H5]+ ions there is some structural interconversion. The structure characteristic feature of their collisional activation mass spectra is the ratio m/z 27 ([C2H3]+): m/z 26 ([C2H2]+˙). For \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{C}}\limits^{\rm{ + }} = {\rm{CH}}_{\rm{2}} $\end{document} the ratio is only weakly dependent upon the translational energy of the ion. For [CH2CHCH2]+, the ratio rises sharply as translational energy is reduced, from 0.9 at 8 kV to c. 3 at 1 kV. [CH2CHCH2]+ ions generated by charge reversal of [CH2CHCH2]? show higher ratios, resulting from their lower average internal energy content. It must therefore be emphasized that [C3H5]+ ion structure assignments should only be made using reference data which apply to specific experimental conditions. [C3H5]+ daughter ion structures for a number of well-known fragmentations have been established. The heat of formation of the 2-propenyl cation was measured to be 969±5 kJ mol?1. Labelling experiments show that at low internal energies, allyl cations do not undergo atom randomization in c. 1–2 μs; high internal energy ions of longer lifetime (c. 8 μs) show complete atom randomization. H˙ atom loss from [13CH3CH?CH2]+˙ has been shown to generate [13CH2CHCH2]+ and \documentclass{article}\pagestyle{empty}\begin{document}$ {}^{{\rm{13}}}{\rm{CH}}_{\rm{2}} \mathop {\rm{C}}\limits^{\rm{ + }} - {\rm{CH}}_{\rm{3}} $\end{document} without any skeletal rearrangement.  相似文献   

5.
Collisional activation spectra were used to characterize isomeric ion structures for [CH5P] and [C2H7P] radical cations and [C2H6P]+ even-electron ions. Apart from ionized methylphosphane, [CH3PH2], ions of structure [CH2PH3] appear to be stable in the gas phase. Among the isomeric [C2H7P] ions stable ion structures [CH2PH2CH3] and [CH2CH2PH3]/[CH3CHPH3] are proposed as being generated by appropriate dissociative ionization reactions of alkyl phosphanes. At least three isomeric [C2H6]+ ions appear to exist, of which \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} - \mathop {\rm P}\limits^{\rm + } {\rm H = CH}_{\rm 2} $\end{document} could be identified positively.  相似文献   

6.
The appearance potentials for the [R'CO2H2]+ ion produced in the fragmentation process \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm R}^{\rm '} {\rm CO}_{\rm 2} {\rm R}} \right]_{}^{_.^ + } $\end{document} → [R'CO2H2]++[R? 2H] have been measured using mono-energetic electron impact techniques for ethyl, n-propyl, and i-propyl formates and acetates. The results indicate that at the threshold the product ion has the protonated acid structure with the hydrogen on the carbonyl and not the hydroxyl group, and that the neutral product for the propyl esters is the allyl radical and not the cyclopropyl radical. For the propyl formates and acetates the appearance potential of the [R'CO2H2]+ ion is identical with the adiabatic ionization potential of the parent ester (measured by photoelectron spectroscopy) indicating that fragmentation occurs for ground state molecular ions. A two-step mechanism is proposed to rationalize the results.  相似文献   

7.
On Chalcogenolates. 172. Reaction of Acetamidine with Carbon Disulfide. 1. Synthesis and Properties of N-Acetimidoyl Dithiocarbamates The reaction of acetamidine H2N? C(CH3)?NH with CS2 at ?15°C yields the acetamidinium salt of N-acetimidoyl dithiocarbamic acid. It reacts with hydroxides to form the corresponding N-acetimidoyl dithiocarbamates. The properties and the thermal behaviour of the prepared compounds \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm M}[{\rm S}_2 {\rm C} - {\rm N} = {\rm C}({\rm CH}_{\rm 3} ) - {\rm NH}_2 ]{\rm with M} = [({\rm H}_2 {\rm N})_2 {\rm C} - {\rm CH}_3 ],{\rm Na} \cdot {\rm CH}_3 {\rm OH},{\rm K} \cdot {\rm H}_2 {\rm O},{\rm Rb},{\rm Cs},{\rm Tl},{\rm Pb}/2{\rm and Cd}/2 \cdot {\rm H}_2 {\rm O} $\end{document} have been described. The decomposition in solution has been studied at 20°C kinetically.  相似文献   

8.
Gas permeability and permselectivity are investigated for polybenzoxazoles from bis(3-amino-4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane (BAHHP) and aromatic diacid chlorides. Effects of thermal cyclization on the permeation properties are also investigated. The polybenzoxazole from BAHHP and 4,4′-(1,1,1,3,3,3-hexafluoroisopropylidene)dibenzoyl chloride (HFDB) displays high performance for CO2/CH4 separation ( $ {\rm P}_{{\rm CO}_2 } $ = 6.1 × 10?9 cm3 (STP) cm?1 s?1 cm-Hg?1, and $ {{{\rm P}_{{\rm CO}_2 } } \mathord{\left/ {\vphantom {{{\rm P}_{{\rm CO}_2 } } {{\rm P}_{{\rm CH}_4 } }}} \right. \kern-\nulldelimiterspace} {{\rm P}_{{\rm CH}_4 } }} $ = 38 at 35°C). The polybenzoxazole from BAHHP and 2,6-naphthalene dicarbonyl chloride displays high performance for H2/CO or H2/CH4 separation ( $ {\rm P}_{{\rm H}_2 } $ = 2.4 × 10?9 cm3 (STP) cm?1 s?1 cm-Hg?1, $ {{{\rm P}_{{\rm H}_2 } } \mathord{\left/ {\vphantom {{{\rm P}_{{\rm H}_2 } } {{\rm P}_{{\rm CO}} }}} \right. \kern-\nulldelimiterspace} {{\rm P}_{{\rm CO}} }} $ = 71, and $ {{{\rm P}_{{\rm H}_2 } } \mathord{\left/ {\vphantom {{{\rm P}_{{\rm H}_2 } } {{\rm P}_{{\rm CH}_{\rm 4} } }}} \right. \kern-\nulldelimiterspace} {{\rm P}_{{\rm CH}_{\rm 4} } }} $ = 250). Permeation properties for the polybenzoxazole from BAHHP and HFDB are close to those for a polyimide of similar chemical structure. The permeation properties are discussed in connection with packing density and local segmental mobility. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
A useful synthesis of a series of new aromatic sulfone ether diamines, H2NC6H4O\documentclass{article}\pagestyle{empty}\begin{document}$\hbox{---}\hskip-5pt[\ {\rm C}_{\rm 2} {\rm H}_{\rm 4} {\rm SO}_{\rm 2} {\rm C}_{\rm 6} {\rm H}_{\rm 4} \hbox{--} {\rm ORO}\hbox{---}\hskip-5pt ]_n {\rm OC}_{\rm 6} {\rm H}_{\rm 4} {\rm SO}_{\rm 2} {\rm C}_{\rm 6} {\rm H}_{\rm 4} \hbox{---} {\rm OC}_{\rm 6} {\rm H}_{\rm 4} {\rm NH}_{\rm 2} $\end{document}, where n = 0, 1, 2…, which increases the tractability of polyimides, polyamide-imides, and polyamides, was developed. These diamines were prepared by condensing various proportions of sodium p-aminophenate, sodium bisphenates, and dichlorodiphenyl sulfone. The synthetic procedures are now refined to the point where simply coagulating these diamines into water yields high purity polymer-grade sulfone ether diamines. The latter have good tractability; and in some cases, it is possible to extrude and injection-mold these high temperature polymers.  相似文献   

10.
Intermolecular alkyl transfer occurs during field desorption of quaternary ammoniohexanoates, resulting in mass spectra containing structurally diagnostic adduct ions. Methyl, ethyl and propyl groups attached to nitrogen readily undergo intermolecular transfer to give [M+CH3]+, [M+C2H5]+ and [M+C3H7]+ ions, respectively. Evidence is presented that alkyl groups even as large as C10H21 can transfer intermolecularly at high emitter temperatures. In addition to the alkyl ion adducts, the field desorption spectra of \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm C}_{10} {\rm H}_{21} \mathop {\rm N}\limits^ + \left({{\rm CH}_3 } \right)_2 \left({{\rm CH}_2 } \right)_5 {\rm COO}^ - $\end{document} show several other adduct and fragment ions whose relative intensities depend strongly on emitter current. The field desorption results are compared with earlier pyrolysis electron impact results on similar compounds.  相似文献   

11.
Collisionally activated spectra demonstrate that CH3CH2C?O+ rather than \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 2} = {\rm CHCH = }\mathop {\rm O}\limits^{\rm + } {\rm H}$\end{document} is formed in the metastable losses of hydrogen from [C3H6O] ions with the oxygen on the first carbon. This provides another example of formation of an acyl ion following ‘ketonization’ prior to metastable decomposition.  相似文献   

12.
Characterization of some [C4H5O2]+ ions in the gas phase using their collisional activation mass spectra shows that the isomeric ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 {\rm OCH = CH} - \mathop {\rm C}\limits^ + {\rm = O,} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm HC} \equiv {\rm C} - \mathop {{\rm C}({\rm OH}){\rm OCH}_3 }\limits^ + $\end{document} are stable for t?10?5 s. Of these, ions of structure were generated by the site specific gas phase protonation of γ-crotonolactone with isobutane or methanol as chemical ionization reagent gases. These results and those derived from measurements on some 2H, 13C and 18O labelled [C4H5O2]+ product ions, were used to study the mechanisms of unimolecular radical elimination reactions, viz. (1) loss of CH3˙ from [trans-methyl crotonate], (2) loss of H˙ from [methyl acrylate]+˙, (3) loss of H˙ from [cyclopropane carboxylic acid]+˙ and (4) loss of CH3˙ from [1,3-dimethoxypropyne]+˙. It is concluded that none of these losses occur by simple bond cleavage. Mechanisms are presented which account for the observation that the first three reactions yield product ions of structure whereas the ions generated by reaction (4) have structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 {\rm OCH = CH} - \mathop {\rm C}\limits^ + {\rm = O}{\rm .} $\end{document}. It is further proposed that a minor fraction of the [M-CH3]+ ions from ionized trans-methyl crotonate is generated via a rearrangement process which yields ions of structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 {\rm OCH = CH} - \mathop {\rm C}\limits^ + {\rm = O}{\rm .} $\end{document}.  相似文献   

13.
The charge stripping mass spectra of [C2H5O]+ ions permit the clear identification of four distinct species: \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - {\rm O - }\mathop {\rm C}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - \mathop {\rm C}\limits^{\rm + } {\rm H - OH}$\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 2} = {\rm CH - }\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}. The latter, the vinyloxonium ion, has not been identified before. It is generated from ionized n-butanol and 1,3-propanediol. Its heat of formation is estimated to be 623±12 kJ mol?1. The charge stripping method is more sensitive to these ion structures than conventional collisional activation, which focuses attention on singly charged fragment ions.  相似文献   

14.
The structures of the m/z 87, [C4H7O2]+, ions generated by dissociative ionization of CH3CGXCOOCH3 and XCH2CH2COOCH3 (X = CH3, Cl, Br, and I) have been investigated via their unimolecular and collisionally activated fragmentations and by apperance energy measurements. For both precursors loss of X = CH3 produced, via H atom transfer, ions of structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH_2 = CH}\mathop {\rm C}\limits^{\rm + } \left({{\rm OH}} \right){\rm OCH}_{\rm 3} $\end{document} (a), ΔHf = 386 kj mol?1. In marked contrast, loss of I˙ from ionized CH3CHICOOCH3 and ICH2CH2COOCH3 proceeded without rearrangement to yield respectively ions of structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH_3}\mathop {\rm C}\limits^{\rm + } {{\rm HCOOCH_3}} $\end{document} (b), ΔHf = 480 kJ mol?1 and (c), ΔHf = 450 kJ mol?1. These different fragmentation behaviours are explained via photoelectron spectra which show that the formal charge site in the precursor ion is at the carbonyl oxygen when X = CH3 but at the halogen atom when X = I. The precursor molecules X = Cl and Br display both of the above characteristics, CH3CHXCOOCH3 yielding mixtures of a and b and XCH2CH2COOCH3 producing a and c ions.  相似文献   

15.
Loss of an alkyl group X? from acetylenic alcohols HC?C? CX(OH)(CH3) and gas phase protonation of HC?C? CO? CH3 are both shown to yield stable HC?C? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}(OH)(CH3) ions. Ions of this structure are unique among all other [C4H5O]+ isomers by having m/z 43 [C2H3O]+ as base peak in both the metastable ion and collisional activation spectra. It is concluded that the composite metastable peak for formation of m/z 43 corresponds to two distinct reaction profiles which lead to the same product ion, CH3\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O, and neutral, HC?CH. It is further shown that the [C4H5O]+ ions from related alcohols (like HC?C? CH(OH)(CH3)) which have an α-H atom available for isomerization into energy rich allenyl type molecular ions, consist of a second stable structure, H2C?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? C(OH)?CH2.  相似文献   

16.
Kinetics and equilibria for the formation of a 1:1 complex between palladium(II) and chloroacetate were studied by spectrophotometric measurements in 1.00 mol HClO4 at 298.2 K. The equilibrium constant, K, of the reaction
was determined from multi-wavelength absorbance measurements of equilibrated solutions at variable temperatures as log 0.006 with and , and spectra of individual species were calculated. Variable-temperature kinetic measurements gave rate constants for the forward and backward reactions at 298.2 K and ionic strength 1.00 mol as and , with activation parameters and , respectively. From the kinetics of the forward and reverse processes, and were derived in good agreement with the results of the equilibrium measurements. Specific Ion Interaction Theory was employed for determination of thermodynamic equilibrium constants for the protonation of chloroacetate () and formation of the PdL+ complex (). Specific ion interaction coefficients were derived.  相似文献   

17.
Several small immonium ions of general formula \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R}^{\rm 1} {\rm R}^{\rm 2} {\rm C = }\mathop {\rm N}\limits^{\rm + } {\rm R}^{\rm 3} {\rm CH}_{\rm 3} $\end{document} (R1, R2, R3 = H or alkyl) eliminate .CH3; this reaction occurs in the mass spectrometer in both fast (source) and slow (metastable) dissociations. Such behaviour violates the even-electron rule, which states that closed-shell cations usually decompose to give closed-shell daughter ions and neutral molecules. The heats of formation of the observed product ions (for example, [(CH3)2C?NH]+.) can be bracketed using arguments based on energy data. Deuterium labelling results reveal that the methyl group originally bound to nitrogen is not necessarily lost in the course of dissociation. Thus, for instance, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{(CH}}_{\rm{3}})_2 = \mathop {\rm{N}}\limits^{\rm{ + }} {\rm{HCD}}_{\rm{3}} $\end{document} eliminates both CH3. and CD3., via different mechanisms, but very little CH2D. or CHD2. loss occurs.  相似文献   

18.
Amphiphilic block polymers of vinyl ethers (VEs). $\rlap{--} [{\rm CH}_{\rm 2} {\rm CH}\left( {{\rm OCH}_{\rm 2} {\rm CH}_{\rm 2} {\rm NH}_{\rm 2} } \right)\rlap{--} ]_m \rlap{--} [{\rm CH}_{\rm 2} {\rm CH}\left( {{\rm OR}} \right)\rlap{--} ]_n \left( {{\rm R: }n{\rm - C}_{{\rm 16}} {\rm H}_{{\rm 33}} ,{\rm }n{\rm - C}_{\rm 4} {\rm H}_{\rm 9} ;m \simeq 40,{\rm n} = 1 - 10} \right)$ were prepared, each of which consists of a hydrophilic segment with pendant primary amino groups and a hydrophobic poly(alkyl VE) segment. Their precursors were obtained by the HI/I2-initiated sequential living cationic polymerization of an alkyl VE and a VE with a phthalimide pendant (CH2 = CHOCH2CH2Im; Im; phthalimide group), where the segment molecular weights and compositions (m/n ratio) could be controlled by regulating the feed ratio of two monomers and the concentration of hydrogen iodide. Hydrazinolysis of the imide functions gave the target polymers which were readily soluble in water under neutral conditions at room temperature. These amphiphilic block polymers lowered the surface tension of their aqueous solutions (0.1 wt%, 25°C) to a minimum ? 30 dyn/cm when the hydrophobic pendant R was n-C4H9 (n = 4–9). The polymers with n-C4H9 pendants in the hydrophobic segment exhibited a higher surface activity than those with n-C16 H33 pendants. The surface activity of the polymers also depended on the pH of the polymer solutions; the surface activity increased in more basic solutions where the ionization of the amino group (? NH2)2? NH3) is suppressed.  相似文献   

19.
Methods are described for the unequivocal identification of the acetyl, [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document} ?O] (a), 1-hydroxyvinyl, [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b), and oxiranyl, (d), cations. They involve the careful examination of metastable peak intensities and shapes and collision induced processes at very low, high and intermediate collision gas pressures. It will be shown that each [C2H3O]+ ion produces a unique metastable peak for the fragmentation [C2H3O]+ → [CH3]++CO, each appropriately relating to different [C2H3O]+ structures. [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions do not interconvert with any of the other [C2H3O]+ ions prior to loss of CO, but deuterium and 13C labelling experiments established that [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] (b) rearranges via a 1,2-H shift into energy-rich leading to the loss of positional identity of the carbon atoms in ions (b). Fragmentation of b to [CH3]++CO has a high activation energy, c. 400 kJ mol?1. On the other hand, , generated at its threshold from a suitable precursor molecule, does not rearrange into [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH], but undergoes a slow isomerization into [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] via [CH2\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}HO]. Interpretation of results rests in part upon recent ab initio calculations. The methods described in this paper permit the identification of reactions that have hitherto lain unsuspected: for example, many of the ionized molecules of type CH3COR examined in this work produce [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OH] ions in addition to [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] showing that some enolization takes place prior to fragmentation. Furthermore, ionized ethanol generates a, b and d ions. We have also applied the methods for identification of daughter ions in systems of current interest. The loss of OH˙ from [CH3COOD] generates only [CH2?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}? OD]. Elimination of CH3˙ from the enol of acetone radical cation most probably generates only [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm + } $\end{document}?O] ions, confirming the earlier proposal for non-ergodic behaviour of this system. We stress, however, that until all stable isomeric species (such as [CH3? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^{\rm + } $\end{document}?C:]) have been experimentally identified, the hypothesis of incompletely randomized energy should be used with reserve.  相似文献   

20.
Hydrogen atoms, generated by the mercury (3P1) sensitization of H2, were allowed to react with dimethyldisulfide in the temperature range of 25–155°C. The only retrievable product is methanethiol, formed in the primary metathetical reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm H} + {\rm CH}_3 {\rm SSCH}_3 {\rm CH}_3 {\rm SH} + {\rm CH}_3 {\rm S} $\end{document}. The intermediacy of thiyl radicals was clearly demonstrated in experiments carried out in the presence of ethylene where one of the major products detected was ethyl methyl sulfide, formed via CH3S + C2H5 → CH3SC2H5. The major fate of the CH3S radical is recombination and disproportionation, and the yield of methanethiol formed via disproportionation contributes less than 5% to the total thiol yield. The rate coefficient of step 1, from competition with the reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm H} + {\rm C}_{\rm 2} {\rm H}_{\rm 4} {\rm C}_{\rm 2} {\rm H}_5 $\end{document}, is k1 = (5.7 ± 1.2) × 1012 exp[? (100 ± 100)/RT] cm3/mol sec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号