首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtained two conformational polymorphs of 2,5‐dichloro‐3,6‐bis(dibenzylamino)‐p‐hydroquinone, C34H30Cl2N2O2. Both polymorphs have an inversion centre at the centre of the hydroquinone ring (Z′ = ), and there are no significant differences between their bond lengths and angles. The most significant structural difference in the molecular conformations was found in the rotation of the phenyl rings of the two crystallographically independent benzyl groups. The crystal structures of the polymorphs were distinguishable with respect to the arrangement of the hydroquinone rings and the packing motif of the phenyl rings that form part of the benzyl groups. The phenyl groups of one polymorph are arranged in a face‐to‐edge motif between adjacent molecules, with intermolecular C—H…π interactions, whereas the phenyl rings in the other polymorph form a lamellar stacking pattern with no significant intermolecular interactions. We suggest that this partial conformational difference in the molecular structures leads to the significant structural differences observed in their molecular arrangements.  相似文献   

2.
Aminobenzylnaphthols are a class of compounds containing a large aromatic molecular surface which makes them suitable candidates to study the role of C—H…π interactions. We have investigated the effect of methyl or methoxy substituents on the assembling of aromatic units by preparing and determining the crystal structures of (S,S)‐1‐{(4‐methylphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO, and (S,S)‐1‐{(4‐methoxyphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO2. The methyl group influenced the overall crystal packing even if the H atoms of the methyl group did not participate directly either in hydrogen bonding or C—H…π interactions. The introduction of the methoxy moiety caused the formation of new hydrogen bonds, in which the O atom of the methoxy group was directly involved. Moreover, the methoxy group promoted the formation of an interesting C—H…π interaction which altered the orientation of an aromatic unit.  相似文献   

3.
The conductivity of a single aromatic ring, perpendicular to its plane, is determined using a new strategy under ambient conditions and at room temperature by a combination of molecular assembly, scanning tunneling microscopy (STM) imaging, and STM break junction (STM‐BJ) techniques. The construction of such molecular junctions exploits the formation of highly ordered structures of flat‐oriented mesitylene molecules on Au(111) to enable direct tip/π contacts, a result that is not possible by conventional methods. The measured conductance of Au/π/Au junction is about 0.1 Go , two orders of magnitude higher than the conductance of phenyl rings connected to the electrodes by standard anchoring groups. Our experiments suggest that long‐range ordered structures, which hold the aromatic ring in place and parallel to the surface, are essential to increase probability of the formation of orientation‐controlled molecular junctions.  相似文献   

4.
The title compound, C12H16BrO2, is an interesting case of a simple organic molecule making use of five different types of intra‐ and intermolecular interactions (viz. conventional and nonconventional hydrogen bonds, and π–π, Br...Br and Br...O contacts), all of them relevant in the molecular and crystal structure geometry. The molecules are strictly planar, with an intramolecular O—H...O hydrogen bond, and associate into two‐dimensional structures parallel to (01) through two different types of halogen bonding. The planar structures, in turn, stack parallel to each other interlinked by C—H...π and π–π contacts. Also discussed are the relevant structural features leading to the rather low melting point of the compound.  相似文献   

5.
We report CH/π hydrogen‐bond‐driven self‐assembly in π‐conjugated skeletons based on oligophenylenevinylenes (OPVs) and trace the origin of interactions at the molecular level by using single‐crystal structures. OPVs were designed with appropriate pendants in the aromatic core and varied by hydrocarbon or fluorocarbon tails along the molecular axis. The roles of aromatic π‐stack, van der Waals forces, fluorophobic effect and CH/π interactions were investigated on the theromotropic liquid crystallinity of OPV molecules. Single‐crystal structures of hydrocarbon OPVs provided direct evidence for the existence of CH/π interactions between the π‐ring (H‐bond acceptor) and alkyl C? H (H‐bond donor). The four important crystallographic parameters, dc?x=3.79 Å, θ=21.49°, φ=150.25° and dHp?x=0.73 Å, matched in accordance with typical CH/π interactions. The CH/π interactions facilitate the close‐packing of mesogens in xy planes, which were further protruded along the c axis producing a lamellar structure. In the absence of CH/π interactions, van der Waals interactions drove the assembly towards a Schlieren nematic texture. Fluorocarbon OPVs exhibited smectic liquid‐crystalline textures that further underwent Smectic A (SmA) to Smectic C (SmC) phase transitions with shrinkage up to 11 %. The orientation and translational ordering of mesogens in the liquid‐crystalline (LC) phases induced H‐ and J‐type molecular arrangements in fluorocarbon and hydrocarbon OPVs, respectively. Upon photoexcitation, the H‐ and J‐type molecular arrangements were found to emit a blue or yellowish/green colour. Time‐resolved fluorescence decay measurements confirmed longer lifetimes for H‐type smectic OPVs relative to that of loosely packed one‐dimensional nematic hydrocarbon‐tailed OPVs.  相似文献   

6.
The title three‐component cocrystal, C6F3I3·2C5H5NO·H2O, has been prepared as a strong candidate for multiple I...O interactions. Its crystal structure is compared with its 1:1 close relative, C6F3I3·C5H5NO [Aakeröy et al. (2014a). CrystEngComm, 16 , 28–31]. The 1,3,5‐trifluoro‐2,4,6‐triiodobenzene and water species both have crystallographic twofold axial symmetry. The main synthon in both structures is the π–π stacking of benzene rings, complemented by a number of O—H...O, C—F...π and, fundamentally, C—I...O interactions. As expected, the latter are among the strongest and more directional interactions of the sort reported in the literature, confirming that pyridine N‐oxide is an eager acceptor. On the other hand, the structure presents only two of these contacts per 1,3,5‐trifluoro‐2,4,6‐triiodobenzene molecule instead of the expected three. Possible reasons for this limitation are analyzed.  相似文献   

7.
This study characterizes the supramolecular synthons that dominate the intermolecular organization of the title compounds, namely dichloridobis(dipyrido[f,h]quinoxaline‐6,7‐dicarbonitrile)zinc(II), [ZnCl2(C16H6N6)2], (I), and tetrachlorido(dipyrido[f,h]quinoxaline‐6,7‐dicarbonitrile)tin(IV), [SnCl4(C16H6N6)], (II), in their respective crystal structures. Molecules of (I) are located on 2b axes of rotational symmetry. Their crystal packing is stabilized mostly by π–π stacking and dipole–dipole attractions between the organic ligand fragments of inversion‐related neighbouring species, as well as by weak intermolecular C—H...N hydrogen bonds. On the other hand, Cl...π and N...π interactions seem to direct the crystal packing in (II), which is unusual in the sense that its aromatic fragments are not involved in π–π stacking. Molecules of (II) are located on mb planes of mirror symmetry. This study confirms the diverse structural chemistry of this organic ligand, which can be involved in a wide range of supramolecular interactions. These include effective coordination to various metal ions via the phenathroline N‐atom sites, π–π stacking and π...halogen contacts through its extended π‐system, and hydrogen bonding and N...π interactions through its nitrile groups. The competing natures of the latter make it difficult to predict a priori the preferred supramolecular motif that may form in a given structure.  相似文献   

8.
The two title chromene compounds, 3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C16H12O2, (I), and 2‐(2‐hydroxy­benzyl­idene)‐3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C19H14O3, (II), have been determined in the monoclinic space group P21/n. Compound (I) is mainly stabilized by C—H⋯π inter­actions. Compound (II) is linked into infinite one‐dimensional chains with a C(3) motif via inter­molecular O—H⋯O hydrogen bonds. The inter­molecular C—H⋯π and π–­π inter­actions also play key roles in stabilizing the crystal packing. Two intra­molecular C—H⋯O hydrogen bonds with S(5) motifs were detected in (II).  相似文献   

9.
Two arylsulfonamide derivatives, N‐(4‐acetylphenyl)benzenesulfonamide, C14H13NO3S, and N‐(4‐acetylphenyl)‐2,5‐dichlorobenzenesulfonamide, C14H11Cl2NO3S, differing by the absence or presence of two chloro substituents on one of the phenyl rings, were synthesized and characterized in order to establish structural relationships and the role of chloro substitution on the molecular conformation and crystal assembly. Both arylsulfonamides form inversion‐related dimers through C—H...π and π–π interactions. These dimers pack in a similar way in the two structures. The substitution of two H atoms at the 2‐ and 5‐positions of one phenyl ring by Cl atoms did not substantially alter the molecular conformation or the intermolecular architecture displayed by the unsubstituted sulfonamide. The structural information controlling the assembly of such compounds in their crystal phases is in the (phenyl)benzenesulfonamide molecular framework.  相似文献   

10.
Synthesis and characterization of mononuclear transition metal complexes viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)‐2‐benzamido‐N'‐(1‐(2‐hydroxy‐6‐methyl‐4‐oxo‐4H‐pyran‐3‐yl) ethylidene) benzohydrazide ( H 2 L ) are reported. Molecular structures of H 2 L , Ni(II) and Cu(II) complexes were determined by single‐crystal X‐ray diffraction studies. The structures were stabilized by various intra/inter‐molecular H‐bonding, C‐H···π and π···π stacking interactions. H 2 L exists in zwitterionic form and acts in a monoanionic manner. Ligand/metal ratio was 2:1 for cobalt, nickel and zinc, whereas 1:1 for the copper complex. Co(II), Ni(II) and Zn(II) complexes display distorted octahedral geometry, while the Cu(II) complex shows distorted square pyramidal geometry around the metal ion. Hirshfeld surface analysis and 2D fingerprint plots revealed that H 2 L and its complexes were supported mainly by H?H, O?H and C?H intermolecular interactions. The synthesized compounds were screened for in vitro anti‐inflammatory activity by gelatin zymography and the activity was comparable with tetracycline. Their cleavage behavior towards calf thymus DNA has been studied using agarose gel electrophoresis method. H 2 L and Cu(II) complex were selected by National Cancer Institute (NCI) for in vitro single dose testing in the full NCI 60 cell lines panel assay. Finally, molecular docking simulation effectively proves the binding of all the synthesized compounds at cyclooxygenase‐2 (COX‐2) active sites.  相似文献   

11.
The title compound, C17H10F5N5O2, is described and compared with its 4‐nitrophenyl isomer [Bustos, Sánchez, Schott, Alvarez‐Thon & Fuentealba (2007). Acta Cryst. E 63 , o1138–o1139]. The title molecule presents its nitro group split into two rotationally disordered components, which in conjunction with the rotation of the `unclamped' rings constitute the main molecular differences. Packing is directed by a head‐to‐tail type `I' C—F...F—C interaction, generating double‐chain strips running along [100]. These substructures are interlinked by a variety of weak F...F, O...F, F...π and O...π interactions.  相似文献   

12.
Polysulfonylamines. CLXXXIV. Crystal Structures of Molecular Triphenylphosphanegold(I) Di(4‐X‐benzenesulfonyl)amides: Isomorphism and Close Packing (X = Me, F, Cl, NO2) vs. Structure‐Determining C–X···Au/O Halogen Bonds (X = Br, I) In order to study the structure‐determining influence that halogen bonding can exert during the course of crystallization, solid‐state structures are compared for two previously reported and four new molecular gold(I) complexes of the type Ph3P–Au–N(SO2–C6H4–4‐X)2, each featuring linear P,N coordination at gold and two phenyl rings with varying p‐substituents X = Me, F, Cl, NO2, Br or I. The compounds were synthesized by reactions of Ph3PAuX (X = Cl or I) with the corresponding silver di(arenesulfonyl)amides, crystallized from dichloromethane, and characterized by low‐temperature X‐ray diffraction. The Me, F, Cl and NO2 congeners are isomorphic and crystallize without solvent inclusion in the chiral orthorhombic space group P212121 (Z′ = 1). These structures are governed by isotropic close packing via three‐dimensional 21 symmetry, incidentally supported by an invariant set of C–H···O=S hydrogen bonds, CH/π interactions and π/π stackings of aromatic rings; in particular, the hard halogen atoms of the fluoro and the chloro homologues are not involved in X···Au, X···O or X···X interactions. The higher homologues, with soft halogen atoms, were obtained as a dichloromethane hemisolvate for X = Br and a corresponding monosolvate for X = I, each triclinic in the centrosymmetric space group (Z′ = 1). Here, the primary structural effect is implemented by infinite chains in which translation‐related molecules are connected for the bromo compound by a bifurcated Au···Br(2)···O=S interaction, for the iodo congener by an equivalent Au···I(2)···O=S interaction and a short halogen bond C–I(1)···O=S. The latter bond is stronger than a similar C–Br···O=S interaction and induces a conformational adjustment of the (CSO2)2N group from the normal twofold symmetry in the bromo compound to an energetically unfavourable asymmetric form in the iodo homologue. In both cases, pairs of antiparallel molecular catemers are associated into strands via sixfold phenyl embraces, the strands are stacked to form layers, the solvent molecules are intercalated between adjacent layers, and the crystal packings are reinforced by a number of C–H···O=S hydrogen bonds and interactions of aromatic rings.  相似文献   

13.
The crystallographically observed molecular structure of the title compound, C19H17NO, and its inverted counterpart are compared with that calculated by density functional theory (DFT) at the B3LYP/6‐311++G(d,p) level. The results from both methods suggest that the observed molecular conformation of the title compound is primarily determined by intermolecular interactions in the crystal structure. The periodic organization of the molecules is stabilized by weak C—H...O and C—H...π hydrogen bonds and thus a two‐dimensional puckered network consisting of R44(22) and R44(38) ring motifs is established. The title molecule has a (+)‐antiperiplanar conformation about the C—C bond in the aminoacetone bridge. The pyramidal geometry observed around the vertex N atom is flattened by the presence of bulky phenyl and naphthylethanone fragments.  相似文献   

14.
In the crystal structures of the diastereoisomers of O‐tosylcinchonidine [(9R)‐cinchon‐9‐yl 4‐methylbenzenesulfonate], (I), and O‐tosylcinchonine [(9S)‐cinchon‐9‐yl 4‐methylbenzenesulfonate], (II), both C26H28N2O3S, both molecules are in an anti‐closed conformation and, in each case, the position of the aryl ring of the tosylate system is influenced by an intramolecular C—H...O hydrogen bond. The molecular packing in (I) is influenced by weak intermolecular C—H...O and C—H...π interactions. The crystal structure of (II) features C—H...π interactions and van der Waals forces only. The computational investigations using RHF/6–31G** ab initio and AM1 semi‐empirical methods performed for (I) and (II) and their protonated species show that the conformational and energetic parameters of the molecules are correlated with differences in their reactivity in hydrolysis to the corresponding 9‐epibases.  相似文献   

15.
The polymorphic study of 3‐(3‐phenyl‐1H‐1,2,4‐triazol‐5‐yl)‐2H‐1‐benzopyran‐2‐one, C17H11N3O2, was performed due to its potential biological activity and revealed three polymorphic modifications in the triclinic space group P, the monoclinic space group P21 and the orthorhombic space group Pbca. These polymorphs have a one‐column layered type of crystal organization. The strongest interactions between the molecules of the studied structures is stacking between π‐systems, while N—H…N and C—H…O hydrogen bonds link stacked columns forming layers as a secondary basic structural motif. C—H…π hydrogen bonds were observed between neighbouring layers and their role is the least significant in the formation of the crystal structure. Packing differences between the polymorphic modifications are minor and can be identified only using an analysis based on a comparison of the pairwise interaction energies.  相似文献   

16.
Ethyl 1‐ethyl‐6‐iodo‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylate, C14H14INO3, (I), and ethyl 1‐cyclopropyl‐6‐iodo‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylate, C15H14INO3, (II), have isomorphous crystal structures, while ethyl 1‐dimethylamino‐6‐iodo‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylate, C14H15IN2O3, (III), possesses a different solid‐state supramolecular architecture. In all three structures, O...I halogen‐bonding interactions connect the quinolone molecules into infinite chains parallel to the unique crystallographic b axis. In (I) and (II), these molecular chains are arranged in (101) layers, viaπ–π stacking and C—H...π interactions, and these layers are then interlinked by C—H...O interactions. The structural fragments involved in the C—H...O interactions differ between (I) and (II), accounting for the observed difference in planarity of the quinolone moieties in the two isomorphous structures. In (III), C—H...O and C—H...π interactions form (100) molecular layers, which are crosslinked by O...I and C—H...I interactions.  相似文献   

17.
Metoprolol {systematic name: (RS)‐1‐isopropylamino‐3‐[4‐(2‐methoxyethyl)phenoxy]propan‐2‐ol}, C15H25NO3, is a cardioselective β1‐adrenergic blocking agent that shares part of its molecular skeleton with a large number of other β‐blockers. Results from its solid‐state characterization by single‐crystal and variable‐temperature powder X‐ray diffraction and differential scanning calorimetry are presented. Its molecular and crystal arrangements have been further investigated by molecular modelling, by a Cambridge Structural Database (CSD) survey and by Hirshfeld surface analysis. In the crystal, the side arm bearing the isopropyl group, which is common to other β‐blockers, adopts an all‐trans conformation, which is the most stable arrangement from modelling data. The crystal packing of metoprolol is dominated by an O—H…N/N…H—O pair of hydrogen bonds (as also confirmed by a Hirshfeld surface analysis), which gives rise to chains containing alternating R and S metoprolol molecules extending along the b axis, supplemented by a weaker O…H—N/N—H…O pair of interactions. In addition, within the same stack of molecules, a C—H…O contact, partially oriented along the b and c axes, links homochiral molecules. Amongst the solid‐state structures of molecules structurally related to metoprolol deposited in the CSD, the β‐blocker drug betaxolol shows the closest analogy in terms of three‐dimensional arrangement and interactions. Notwithstanding their close similarity, the crystal lattices of the two drugs respond differently on increasing temperature: metoprolol expands anisotropically, while for betaxolol, an isotropic thermal expansion is observed.  相似文献   

18.
19.
The title compounds, C32H28N2O4, (I), and C32H28N2S4, (II), respectively, are tetra­substituted pyrazines and both possess Ci symmetry. They differ only in the hetero atom (X) of the –­CH2XPh side‐arm substituents: X = O in (I) and S in (II). Compound (I) has an overall S‐shape with a pair of adjacent –­CH2OPh side arms alternately above and below the plane of the central pyrazine ring. The phenyl rings are inclined to one another by 12.63 (18)° and there is one intra­molecular C—H⋯O hydrogen bond involving adjacent –CH2OPh side arms. In compound (II), adjacent –CH2SPh side arms point in opposite directions with respect to the pyrazine ring plane, with the phenyl rings inclined at 60.45 (8)°. Both structures have weak C—H⋯π inter­molecular inter­actions.  相似文献   

20.
The title Schiff base compound, C28H26N2O2, possesses both OH and NH tautomeric character in its mol­ecular structure. While the OH side of the compound is described as an inter­mediate state, its NH side adopts a predominantly zwitterionic form. The mol­ecular structure of the compound is stabilized by both N+—H⋯O and O—H⋯N intra­molecular hydrogen bonds. There are two weak C—H⋯O hydrogen bonds leading to polymeric chains of topology C(5) and C(13) running along the b axis of the unit cell. In addition, inter­molecular C—H⋯π inter­actions serve to stabilize the extended structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号