首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligonucleotides containing 4-aminobenzimidazole 2′-deoxyribofuranoside (1,3-dideaza-2′-deoxyadenosine; c1c3Ad, 1 ) were synthesized. For this purpose, various NH2-protecting groups were investigated, and the [(9H-fluoren-9-yl)methoxy]carbonyl group was selected for phosphoramidite protection (→ 4c ). Apart from the phosphoramidite 3 , the phosphonate 2 was prepared. Compound 1 was incorporated in a homooligonuclectide as well as in oligomers containing naturally occurring nucleosides. The Tm values and the thermodynamic data of various duplexes ( 11 · 10 , 17 · 10 , 18 · 10 ) containing 4-aminobenzimidazole were determined. Although d[(c1c3A)20] ( 11 ) does not form a Hoogsteen duplex with d(T20) ( 10 ) as observed with d[(c1A)20], it destabilizes the Watson-Crick duplexes to a much smaller extent than it was expected from a bulged loop structure. Apparently, 4-aminobenz-imidazole interacts with regular nucleoside residues within a Watson-Crick duplex structure, most likely by vertical stacking. According to the low basicity of the amino group, only weak H-bonding is expected.  相似文献   

2.
Solid-phase synthesis of the oligo(2′-deoxynucleotides) 19 and 20 containing 2′-deoxy-β-D -xylocytidine ( 4 ) is described. For this purpose, 1-(2-deoxy-β-D -threo-pentofuranosyl)cytosine ( = 1-(2-deoxy-β-D -xylofuranosyl)-cytosine; 4 ) was protected at its 4-NH2 group with a benzoyl (→ 5 ) or an isobutyryl (→ 8 ) residue, and a dimethoxytrityl group was introduced at 5′-OH (→ 7, 10 ; Scheme 2). Compounds 7 and 10 were converted into the 3′-phosphonates 11a,b . While 19 could be hybridized with 21 and 22 under formation of duplexes with a two-nucleotide overhang on both termini ( 19 · 21 : Tm 29°; 19 · 22 : Tm 22°), the decamer 20 bearing four xCd residues could no longer be hybridized with one of the opposite strands. Moreover, the oligonucleotides d[(xC)8? C] ( 13 ), d[(xC)4? C] ( 14 ), d[C? (xC)4? C] ( 15 ), and d[C? (xC)3? C] ( 16 ) were synthesized. While 13 exhibits an almost inverted CD spectrum compared to d(C9) ( 17 ), the other oligonucleotides show CD spectra typical for regular right-handed single helices. At pH 5, d[(xC)8? C] forms a stable hemi-protonated duplex which exhibits a Tm of 60° (d[(CH+)9] · d(C9): Tm 36°). The thermodynamic parameters of duplex formation of ( 13H + · 13 ) and ( 17H + · 17 ) were calculated from their melting profiles and were found to be identical in ΔH but differ in ΔS ( 13H + · 13 : ΔS = ?287 cal/K mol; 17H + · 17 : ΔS = ?172 cal/K mol).  相似文献   

3.
The 1,7-dideaza-2′-deoxyadenosine (c1c7Ad; 1 ) was converted into building blocks 3a , b for solid-phase oligodeoxyribonucleotide synthesis. Testing various N-protecting groups – benzoyl, phenoxyacetyl, [(fluoren-9-yl)methoxy]carbonyl, and (dimethylamino)methylidene – only the latter two were found to be suitable ( 1 → 4b, d ). Ensuing 4,4′-dimethoxytritylation of 4d and phosphitylation afforded the 3′-phosphonate 3a or the 3′-[(2-cyanoethyl)diisopropylphosphoramidite] 3b . Self-complementary oligonucleotides with alternating dA or c1c7Ad and dT residues ( 7 and 8 ) as well as palindromic oligomers such as d(C-G-C-G-c1c7 A-c1c7 A-T-T-C-G-C-G) ( 10 ) and d(G-T-A-G-c1c7 A-c1c7 A-T-T-C-T-A-C) ( 12 ) were synthesized. Duplex stability was decreased because 1 cannot form Watson-Crick or Hoogsteen base pairs if incorporated into oligonucleotides. On the other hand, the structural modifications in 10 and 12 forced these palindromic oligomers to form hairpin structures.  相似文献   

4.
The formation of cyclic duplexes (pairing) of known oxymethylene‐linked self‐complementary U*[o]A(*) dinucleosides contrasts with the absence of pairing of the ethylene‐linked U*[ca]A(*) analogues. The origin of this difference, and the expected association of U*[x]A(*) and A*[x]U(*) dinucleosides with x=CH2, O, or S was analysed. According to this analysis, pairing occurs via constitutionally isomeric Watson–Crick, reverse WatsonCrick, Hoogsteen, or reverse Hoogsteen H‐bonded linear duplexes. Each one of them may give rise to three diastereoisomeric cyclic duplexes, and each one of them can adopt three main conformations. The relative stability of all conformers with x=CH2, O, or S were analysed. U*[x]A(*) dinucleosides with x=CH2 do not form stable cyclic duplexes, dinucleosides with x=O may form cyclic duplexes with a gg‐conformation about the C(4′)? C(5′) bond, and dinucleosides with x=S may form cyclic duplexes with a gt‐conformation about this bond. The temperature dependence of the chemical shift of H? N(3) of the self‐complementary, oxymethylene‐linked U*[o]A(*) dinucleosides 1 – 6 in CDCl3 in the concentration range of 0.4–50 mM evidences equilibria between the monoplex, mainly linear duplexes, and higher associates for 3 , between the monoplex and cyclic duplexes for 6 , and between the monoplex, linear, and cyclic duplexes as well as higher associates for 1, 2, 4 , and 5 . The self‐complementary, thiomethylene‐linked U*[s]A(*) dinucleosides 27 – 32 and the sequence isomeric A*[s]U(*) analogues 33 – 38 were prepared by S‐alkylation of the 6‐(mesyloxymethyl)uridine 12 and the 8‐(bromomethyl)adenosine 22 . The required thiolates were prepared in situ from the C(5′)‐acetylthio derivatives 9, 15, 19 , and 25 . The association in CHCl3 of the thiomethylene‐linked dinucleoside analogues was studied by 1H‐NMR and CD spectroscopy, and by vapour‐pressure osmometric determination of the apparent molecular mass. The U*[s]A(*) alcohols 28, 30 , and 31 form cyclic duplexes connected by Watson–Crick H‐bonds, while the fully protected dimers 27 and 29 form mainly linear duplexes and higher associates. The diol 32 forms mainly cyclic duplexes in solution and corrugated ribbons in the solid state. The nucleobases of crystalline 32 form reverse Hoogsteen H‐bonds, and the resulting ribbons are cross‐linked by H‐bonds between HOCH2? C(8/I) and N(3/I). Among the A*[s]U(*) dimers, only the C(8/I)‐hydroxymethylated 37 forms (mainly) a cyclic duplex, characterized by reverse Hoogsteen base pairing. The dimers 34 – 36 form mainly linear duplexes and higher associates. Dimers 34 and particularly 38 gelate CHCl3. Temperature‐dependent CD spectra of 28, 30, 31 , and 37 evidence π‐stacking in the cyclic duplexes. Base stacking in the particularly strongly associating diol 32 in CHCl3 solution is evidenced by a melting temperature of ca. 2°.  相似文献   

5.
The oligonucleotide building blocks, the phosphonates 1a, b and the phosphoramidites 2a, b derived from 7-iodo- and 7-bromo-7-deaza-2′-deoxyguanosines 3a, b were prepared. They were employed in solid-phase oligonucleotide synthesis of the alternating octamers d(Br7c7G-C)4 ( 8 ) and d(I7c7G-C)4 ( 9 ) as well as the homo-oligonucleotides d[(Br7c7G)5-G] ( 11 ) and d[(I7c7G)5-G] ( 12 ). The melting profiles and CD spectra of oligonucleotide duplexes were measured. The Tm values as well as the thermodynamic data were determined and correlated to the major-groove modification of this DNA. The self-complementary octamers 8 and 9 form more stable duplexes compared to the parent oligomer d(G-C)4. The heteroduplex of d[(I7c7G)5-G] ( 12 ) with d(C6) is slightly destabilized (ΔTm = ?12°) over that of d[(c7G)5-G] with d(C6). However, the complex of 12 with poly(C) is more stable than that of d[(c7G5-G)] with poly(C).  相似文献   

6.
Dipyrido[3,2-a:2′,3′-c]phenazine (dppz) derivatives were conjugated to 9-mer and 18-mer DNA (ODN) at a site without nucleobase, either at the 5′- or 3′-end or at a internucleotide position, via linkers of 7, 12, or 18 atoms lengths. These dppz-linked ODNs were synthesized using novel backbone glycerol phosphoramidites: Glycerol, serving as artificial nucleoside without nucleobase, was modified to amines 10 , 23 , and 24 , which were suitable for the subsequent key reaction with dppz-carboxylic acid 3 (Schemes 2 and 3). The products of these reactions (see 5 – 7 ) were then transformed to the standard phosphoramidite derivatives (see 27 , 29 , and 30 ) or used for loading on a CPG support (see 28 , 31 , and 32 ). The dppz-modified ODNs were subsequently assembled in the usual manner using automated solid-phase DNA synthesis. The 9-mer ODN-dppz conjugates 35 – 43 were tested for their ability to form stable duplexes with target DNA or RNA strands (D11 ( 60 ) or R11 ( 61 )), while the 18-mer ODN-dppz conjugates 48 – 56 were tested for their ability to form stable triplexes with a DNA target duplex D24⋅D24 ( 62 ) (see Tables 1 and 2). The presence of the conjugated dppz derivative increases the stability of DNA⋅DNA and DNA⋅RNA duplexes, typically by a ΔTm of 7.3 – 10.9° and 4.5 – 7.4°, respectively, when the dppz is tethered at the 5′- or 3′-terminal (Table 2). The dppz derivatives also stabilize triplexes when attached to the 5′- or 3′-end, with a ΔTm varying from 3.8 – 11.1° (Table 3). The insertion of a dppz building block at the center of a 9-mer results in a considerably poorer stability of the corresponding DNA⋅DNA duplexes (ΔTm=0.5 to 4.2°) and DNA⋅RNA duplexes (ΔTm=−1.5 to 0.9°), while the replacement of one interior nucleotide by a dppz building unit in the corresponding 8-mer ODN does not reveal the formation of any duplex at all. Different types of modifications in the middle of the 18-mer ODN, in general, do not lead to any triplex formation, except when the dppz derivative is tethered to the ODN through a 12-atom-long linker (Entry 9 in Table 3).  相似文献   

7.
Xe(OTeF5)2 reacts with Sb(OTeF5)3 under the formation of [Xe2(OTeF5)3]+[Sb(OTeF5)6]-. From SO2ClF solution a yellow solvate [F5TeOXe]+·SO2ClF· [Sb(OTeF5)6]- is formed with the crystal data: a = 1028.1(1), b = 1040.9(1), c = 1780.2(3) pm, α = 98.07(1), β = 97.68(1), γ = 105.82(1)°, space group . The O-Xe···O fragment is essentially linear (176.1(2)°), and the two Xe-O distances are quite different 197.1(4) and 242.6(4) pm.  相似文献   

8.
Reactions of divalent Zn‐Hg metal ions with 1,3‐imidazolidine‐2‐thione (imdtH2) in 1 : 2 molar ratio have formed monomeric complexes, [Zn(η1‐S‐imdtH2)2(OAc)2] ( 1 ), [Cd((η1‐SimdtH2)2I2] ( 2 ), [Cd(η1‐S‐imdtH2)2Br2] ( 3 ), and [Hg(η1‐S‐imdtH2)2I2] ( 4 ). Complexes 1 – 4 , have been characterized by elemental analysis (C, H, N), spectroscopy (IR, 1H, NMR) and x‐ray crystallography ( 1 ‐ 4 ). Hydrogen bonding between oxygen of acetate and imino hydrogen of ligand, {N(2)–H(2C)···O(2)#} in 1 , ring CH and imino hydrogen, {C(2A)–H(2A)···Br(2)#} in 3 have formed H‐bonded dimers. Similarly, the interactions between molecular units of complexes 2 and 4 have yielded 2D polymers. The polymerization occurs via intermolecular interactions between thione sulfur and imino hydrogen, {N(2)–H(2)···S(1)#}, imino hydrogen and the iodine atom, {NH(1)···I(2)#} in 2 and imino hydrogen – iodine atom {N(2A)–H(2A)···I(2)} and I···I interaction in 4 . Crystal data: [Zn(η1‐S‐imdtH2)2(OAc)2] ( 1 ), C10H18N4O4S2Zn, orthorhombic, Pbcn, a = 9.3854(7) Å, b = 12.4647(10) Å, c = 13.2263(11) Å; V = 1547.3(2) Å3, Z = 4, R = 0.0280 [Cd((η1‐S‐imdtH2)2I2] ( 2 ), C6H12CdI2N4S2, orthorhombic, Pnma, a = 13.8487(10) Å, b = 14.4232(11) Å, c = 7.0659(5) Å; Z = 4, V = 1411.36(18) Å3, R = 0.0186.  相似文献   

9.
The self‐complementary, ethylene‐linked U*[ca]A(*) dinucleotide analogues 8, 10, 12, 14, 16 , and 18 , and the sequence‐isomeric A*[ca]U(*) analogues 20, 22, 24, 26, 28 , and 30 were obtained by Pd/C‐catalyzed hydrogenation of the corresponding, known ethynylene‐linked dimers. The association of the ethylene‐linked dimers was investigated by NMR and CD spectroscopy. The U*[ca]A(*) dimers form linear duplexes and higher associates (K between 29 and 114M ?1). The A*[ca]U(*) dimers, while associating more strongly (K between 88 and 345M ?1), lead mostly to linear duplexes and higher associates; they form only minor amounts of cyclic duplexes. The enthalpy–entropy compensation characterizing the association of the U*[cx]A(*) and A*[cx]U(*) dimers (x=y, e, and a) is discussed.  相似文献   

10.
The self‐complementary (Z)‐configured U*[ce]A(*) dinucleotide analogues 6, 8, 10, 12, 14 , and 16 , and the A*[ce]U(*) dimers 19, 21, 23, 25, 27 , and 29 were prepared by partial hydrogenation of the corresponding ethynylene linked dimers. Photolysis of 14 led to the (E)‐alkene 17 . These dinucleotide analogues associate in CDCl3 solution, as evidenced by NMR and CD spectroscopy. The thermodynamic parameters of the duplexation were determined by van't Hoff analysis. The (Z)‐configured U*[ce]A(*) dimers 14 and 16 form cyclic duplexes connected by WatsonCrick H‐bonds, the (E)‐configured U*[ce]A dimer 17 forms linear duplexes, and the U*[ce]A(*) allyl alcohols 6, 8, 10 , and 12 form mixtures of linear and cyclic duplexes. The C(6/I)‐unsubstituted A*[ce]U allyl alcohols 19 and 23 form linear duplexes, whereas the C(6/I)‐substituted A*[ce]U* allyl alcohols 21 and 25 , and the C(5′/I)‐deoxy A*[ce]U(*) dimers 27 and 29 also form minor amounts of cyclic duplexes. The influence of intra‐ and intermolecular H‐bonding of the allyl alcohols and the influence of the base sequence upon the formation of cyclic duplexes are discussed.  相似文献   

11.
Oligonucleotides containing 7-substituted 8-aza-7-deazaguanines (=6-amino-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-ones) were prepared by automated solid-phase synthesis. A series of 7-alkynylated 8-aza-7-deaza-2′-deoxyguanosines (see 4a – d ) were synthesized with the 7-iodonucleoside 3c as starting material and by the Pd0/CuI-catalyzed cross-coupling reaction with various alkynes. Phosphoramidites were prepared from the 7-substituted 8-aza-7-deaza-2′-deoxyguanosine derivatives carrying halogeno, cyano, and hexynyl substituents. From the melting profiles of oligonucleotide duplexes, the Tm values as well as the thermodynamic data were determined. A significant duplex stabilization by the 7-substituents was observed for the DNA⋅DNA duplexes, but not in the case of DNA⋅RNA hybrids.  相似文献   

12.
Gaseous WS2Cl2 and WS2Br2 are formed by the reaction of solid WS2 with chlorine resp. bromine at temperatures of about 1000 K. This could be shown by mass spectrometric measurements. The heats of formation and entropies of WS2Cl2 and WS2Br2 have been determined by means of mass spectrometry (MS) and quantum chemical calculations (QC). WS2I2 could not be detected by experimental methods. This is in line with the quantum chemically determined equilibrium constant of the formation reaction. The following values are given:, ΔfH0298(WS2Cl2) = –230.8 kJ · mol–1 (MS), ΔfH0298(WS2Cl2) = –235.0 kJ · mol–1 (QC),, S0298(WS2Cl2) = 370.7 J · K–1 · mol–1 (QC) and, cp0T(WS2Cl2) = 103.78 + 7.07 × 10–3 T – 0.93 × 105 T–2 – 3.25 × 10–6 T2 (298.15 K < T < 1000 K) (QC). ΔfH0298(WS2Br2) = –141.9 kJ · mol–1 (MS), ΔfH0298(WS2Br2) = –131.5 kJ · mol–1 (QC),, S0298(WS2Br2) = 393.9 J · K–1 · mol–1 (QC) and, cp0T(WS2Br2) = 104.84 + 5.32 × 10–3 T – 0.75 × 105 T–2 – 2.45 × 10–6 T2 (298.15 K < T < 1000 K) (QC). ΔfH0298(WS2I2) = –18.0 kJ · mol–1 (QC), S0298(WS2I2) = 409.9 J · K–1 · mol–1 (QC) and, cp0T(WS2I2) = 105.17 + 4.77 × 10–3 T – 0.67 × 105 T–2 – 2.19 × 10–6 T2 (298.15 K < T < 1000 K) (QC). These molecules have the expected C2v‐symmetry.  相似文献   

13.
Bis(5‐amino‐1,2,4‐triazol‐4‐ium‐3‐yl)methane dichloride (BATZM·Cl2 or C5H10N82+·2Cl?) was synthesized and crystallized, and the crystal structure was characterized by single‐crystal X‐ray diffraction; it belongs to the space group C2/c (monoclinic) with Z = 4. The structure of BATZM·Cl2 can be described as a V‐shaped molecule with reasonable chemical geometry and no disorder, and its one‐dimensional structure can be described as a rhombic helix. The specific molar heat capacity (Cp,m) of BATZM·Cl2 was determined using the continuous Cp mode of a microcalorimeter and theoretical calculations, and the Cp,m value is 276.18 J K?1 mol?1 at 298.15 K. The relative deviations between the theoretical and experimental values of Cp,m, HTH298.15K and STS298.15K of BATZM·Cl2 are almost equivalent at each temperature. The detonation velocity (D) and detonation pressure (P) of BATZM·Cl2 were estimated using the nitrogen equivalent equation according to the experimental density; BATZM·Cl2 has a higher detonation velocity (7143.60 ± 3.66 m s?1) and detonation pressure (21.49 ± 0.03 GPa) than TNT. The above results for BATZM·Cl2 are compared with those of bis(5‐amino‐1,2,4‐triazol‐3‐yl)methane (BATZM) and the effect of salt formation on them is discussed.  相似文献   

14.
Five dinuclear lanthanide complexes [Ln2L2(NO3)2(OAc)4] · 2CH3CN [Ln = Gd ( 1 ), Tb ( 2 ), Dy ( 3 ), Ho ( 4 ), and Er ( 5 )] [L = 2‐((2‐pyridinylmethylene)hydrazine)ethanol] were synthesized from the reactions of Ln(NO3)3 · 6H2O with L and CH3COOH in the presence of triethylamine. Their crystal structures were determined. They show similar dinuclear cores with the two lanthanide ions bridged by four acetate ligands in the μ2‐η12 and μ2‐η11 bridging modes. Each LnIII ion in complexes 1 – 5 is further chelated by one L ligand and one nitrate ion, leading to the formation of a nine‐coordinated mono‐capped square antiprism arrangement. The dinuclear molecules in 1 – 5 are consolidated by hydrogen bonds and π ··· π stacking interactions to build a two‐dimensional sheet. Their magnetic properties were investigated. It revealed antiferromagnetic interactions between the GdIII ions in 1 and ferromagnetic interactions between the TbIII ions in 2 . The profiles of χmT vs. T curves of 3 – 5 reveal that the magnetic properties of 3 – 5 are probably dominated by the thermal depopulation of the Stark sublevels of LnIII ions.  相似文献   

15.
Recent experimental results on the thermal decomposition of N2O5 in N2 are evaluated in terms of unimolecular rate theory. A theoretically consistent set of fall-off curves is constructed which allows to identify experimental errors or misinterpretations. Limiting rate constants k0 = [N2] 2.2 × 10?3 (T/300)?4.4 exp(?11,080/T) cm3/molec·s over the range of 220–300 K, k = 9.7 × 1014 (T/300)+0.1 exp(?11,080/T) s?1 over the range of 220–300 K, and broadening factors of the fall-off curve Fcent = exp(-T/250) + exp(?1050/T) over the range of 220–520 K have been derived. NO2 + NO3 recombination rate constants over the range of 200–300 K are krec,0 = [N2] 3.7 × 10?30 (T/300)?4.1 cm6/molec2·s and krec,∞ = 1.6 × 10?12 (T/300)+0.2 cm3/molec·s.  相似文献   

16.

The reaction of CuX2(X=Cl, Br) with 2-aminopyrimidine in aqueous solution, or 2-amino-5-bromopyrimidine in aqueous acid yields compounds of the forms [LCuCl2] n (1), [L2CuCl2] (2) and [L'2CuBr2] (3) [L=2-aminopyrimidine; L'=2-amino-5-bromo-pyrimidine]. The three compounds all form layered structures in which each copper ion is coordinated to two 2-aminopyrimidine molecules and two halide ions. Common structural threads involve bridging ligation [either by monomeric (1) or hydrogen bonded ligand dimers (2 and 3)], N-H···X and N-H···N hydrogen bonding and π-π stacking interactions as well as semi-coordinate Cu···X bond formation (1 and 2) or Br···Br interactions (3). Compounds 1 and 2 crystallize as two-dimensional coordination polymers with asymmetrically bihalide bridged (CuX2) n chains cross-linked into sheets by the 2-aminopyrimidine molecules (1) or by hydrogen bonded L2 dimers (2). The halide bibridged chains expand their primary copper coordination spheres to give 4 + 2 coordination spheres in 1 and 2. In 3, the layer structure involves coordination of the hydrogen bonded L'2 dimers and C-Br···Br- interactions. Crystal data: (1): monoclinic, P21/m, a=3.929(1), b=12.373(2), c=7.050(1)å, β=91.206(4)°, V=342.7(1)&Aringsup3;, Z=2, D calc= 2.225Mg/m3, μ=3.878 mm-1, R=0.0269 for [|I|≥3σ(I)]. For (2): triclinic, P-1, a=4.095(4), b=7.309(5), c=10.123(6) å, α=86.28(6), β=78.44(6), γ=74.55(8)°, V=286.1(4) Å3, Z=1, D calc=1.884 Mg/m3, μ=2.360 mm-1, R=0.0506 for [|I|≥2σ(I)]. For (3): triclinic, P-1, a=6.074(4), b=7.673(3), c=8.887(3) å, α=108.43(3) β=100.86(5), γ=106.96(4)°, V=357.0(3) Å3, Z=1, D calc=2.657 Mg/m3, μ=12.714mm-1, R=0.0409 for [|I|≥2σ(I)].  相似文献   

17.
用精密自动绝热量热计测定了4-硝基苯甲醇(4-NBA)在78 ~ 396 K温区的摩尔热容。其熔化温度、摩尔熔化焓及摩尔熔化熵分别为:(336.426 ± 0.088) K, (20.97 ± 0.13) kJ×mol-1 和 (57.24 ± 0.36) J×K-1×mol-1.根据热力学函数关系式,从热容值计算出了该物质在80 ~ 400 K温区的热力学函数值 [HT - H298.15 K] 和[ST - S298.15 K]. 用精密氧弹燃烧量热计测定了该物质在T=298.15 K的恒容燃烧能和标准摩尔燃烧焓分别为 (C7H7NO3, s)=- ( 3549.11 ± 1.47 ) kJ×mol-1 和 (C7H7NO3, s)=- ( 3548.49 ± 1.47 ) kJ×mol-1. 利用标准摩尔燃烧焓和其他辅助热力学数据通过盖斯热化学循环, 计算出了该物质标准摩尔生成焓 (C7H7NO3, s)=- (206.49 ± 2.52) kJ×mol-1 .  相似文献   

18.
Oligonucleotides containing 7‐deaza‐2′‐deoxyinosine derivatives bearing 7‐halogen substituents or 7‐alkynyl groups were prepared. For this, the phosphoramidites 2b – 2g containing 7‐substituted 7‐deaza‐2′‐deoxyinosine analogues 1b – 1g were synthesized (Scheme 2). Hybridization experiments with modified oligonucleotides demonstrate that all 2′‐deoxyinosine derivatives show ambiguous base pairing, as 2′‐deoxyinosine does. The duplex stability decreases in the order Cd>Ad>Td>Gd when 2b – 2g pair with these canonical nucleosides (Table 6). The self‐complementary duplexes 5′‐d(F7c7I‐C)6, d(Br7c7I‐C)6, and d(I7c7I‐C)6 are more stable than the parent duplex d(c7I‐C)6 (Table 7). An oligonucleotide containing the octa‐1,7‐diyn‐1‐yl derivative 1g , i.e., 27 , was functionalized with the nonfluorescent 3‐azido‐7‐hydroxycoumarin ( 28 ) by the Huisgen–Sharpless–Meldal cycloaddition ‘click’ reaction to afford the highly fluorescent oligonucleotide conjugate 29 (Scheme 3). Consequently, oligonucleotides incorporating the derivative 1g bearing a terminal C?C bond show a number of favorable properties: i) it is possible to activate them by labeling with reporter molecules employing the ‘click’ chemistry. ii) Space demanding residues introduced in the 7‐position of the 7‐deazapurine base does not interfere with duplex structure and stability (Table 8). iii) The ambiguous pairing character of the nucleobase makes them universal probes for numerous applications in oligonucleotide chemistry, molecular biology, and nanobiotechnology.  相似文献   

19.
The Structure-directing Influence of α, ω-Alkanediammonium Ions on the Formation of Cyanocuprates(I) The alkane-1, n-diammonium-hexacyanotetracuprates(I) (n = 2 - 4) [NH3(CH2)2NH3][Cu4(CN)6]·2H2O ( 1 ), [NH3(CH2)3NH3][Cu4(CN)6]·H2O ( 2 ) and [NH3(CH2)4NH3][Cu4(CN)6]·2H2O ( 3 ) and the pentane-1, 5-diammonium-tetradecacyanooctacuprate(I) [NH3(CH2)5NH3]3[Cu8(CN)14]·3H2O ( 4 ) were obtained by hydrothermal reaction of ethane-1, 2-diamine, propane-1, 3-diamine, butane-1, 4-diamine and pentane-1, 5-diamine with CuCN, NaCN and formic acid. In the crystal structures of compounds 1 - 3 anionic layers of connected (CuCN)6-rings which vary in conformation are piled up containing rigid all-anti α, ω-alkanediammonium ions as spacers. The dications and water molecules are linked to chains by hydrogen bridges, penetrating the anionic layers in a needle-like fashion. In contrast the deformable dications [NH3(CH2)5NH3]2+ in 4 are integrated in cavities of a three-dimensional cyanocuprate(I). Crystal structure data: 1 , monoclinic, P21/c, a = 6.982(3) Å, b = 8.579(4) Å, c = 13.054(6) Å, β = 92.806(10)°, V = 780.9(6) Å3, Z = 2, dc = 2.145 gcm-1, R1 = 0.094; 2 , orthorhombic, C2221, a = 8.715(2) Å, b = 14.764(3) Å, c = 12.411(2) Å, V = 1596.7(5) Å3, Z = 4, dc = 2.098 gcm-1, R1 = 0.026; 3 , orthorhombic, Pnn2, a = 7.276(2) Å, b = 8.612(2) Å, c = 14.731(3) Å, V = 923.1(3) Å3, Z = 2, dc = 1.916 gcm-1, R1 = 0.036; 4 , triclinic, P1, a = 8.113(5) Å, b = 11.068(5) Å, c = 13.689(5) Å, α = 91.270(5)°, β = 99.718(5)°, γ = 103.994(5)°, V = 1173.1(10) Å3, Z = 1, dc = 1.746 gcm-1, R1 = 0.057.  相似文献   

20.
Two rare-earth metal coordination compounds, (NH4)4[SmIII2(Httha)2]·16H2O (1) (H6ttha?=?triethylenetetramine-N,N,N,N′′,N′′′,N′′′-hexaacetic acid) and (NH4)4[SmIII2(dtpa)2]·10H2O (2) (H5dtpa?=?diethylenetriamine-N,N,N,N′′,N′′-pentaacetic acid), have been synthesized through reflux and characterized by FT-IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction techniques. SmIII of (NH4)4[SmIII2(Httha)2]·16H2O (1) is nine-coordinate, forming tricapped trigonal prismatic coordination with three amine nitrogens and six oxygens, in which four oxygens are from one ttha and two from the other ttha. (NH4)4[SmIII2(Httha)2]·16H2O (1) crystallizes in the monoclinic crystal system with P2(1)/c space group. The crystal data are: a?=?13.9340(13) Å, b?=?22.890(3) Å, c?=?20.708(2) (14) Å, β?=?99.521(2)°, and V?=?6513.7(13) Å3. There are two –NH+– groups in the [SmIII2(Httha)2]4?. The polymeric (NH4)4[SmIII2(dtpa)2]·10H2O (2) also is nine-coordinate with tricapped trigonal prismatic conformation and crystallizes in the triclinic crystal system with P–1 space group. The cell dimensions are: a?=?9.8240(8) Å, b?=?10.0329(9) Å, c?=?13.0941(11) Å, β?=?77.1640(10)°, and V?=?1227.30(18) Å3. In (NH4)4[SmIII2(dtpa)2]·10H2O, there are two types of ammonium cations, which connect [SmIII2(dtpa)2]4? and lattice water through hydrogen bonds, leading to a 2-D ladder-like layer structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号