首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Reaction of the ligand-bridged derivatives [M3(CO)10{μ-(RO)2PN(Et)P(OR)2}] and [M3(CO)8{μ-(RO)2PN(Et)P(OR)2}2] (M = Ru or Os; R = Me or Pri) with halogens leads to the formation of cationic products [M3(μ-X)(CO)10{μ- (RO)2PN(Et)P(OR)2}]+ and [M3(μ-X)(CO)8{μ-(RO)2PN(Et)P(OR)2}2]+ (X = Cl, Br or I) in which the halogen bridges an opened edge of the metal atom framework; the crystal structure of [Ru3(μ-I)(CO)8{μ-(MeO)2PN(Et)P(OMe)2}2]PF6 is reported.  相似文献   

2.
Reaction of [Fe2(CO)9] with a half molar amount of R2PYPR2 (Y = CH2, R = Ph, Me, OMe or OPri; Y = N(Et), R = OPh, OMe or OCH2; Y = N(Me), R = OPri or OEt) leads to the ready formation of a product which on irradiation with ultraviolet light rapidly decarbonylates to the heptacarbonyl derivative [Fe2(μ-CO)(CO)6{μ-R2PYPR2}]. Treatment of the latter with a slight excess of the appropriate ligand results, under photochemical conditions, in the formation of the dinuclear pentacarbonyl complex [Fe2(μ-CO)(C))4{μ-R2PYPR2}2] but under thermal conditions in the formation of the mononuclear species [Fe(CO)3{R2PYPR2}]. Reaction of [Ru3(CO)12] with an equimolar amount of (RO)2PN(R′)P(OR)2 (R′ = Me, R = Pri or Et; R′ = Et, R = Ph or Me) under either thermal or photochemical conditions produces [Ru3(CO)10{μ-(RO)2PN(OR)2}] which reacts further with excess (RO)2PN(R′)P(OR)2 on irradiation with ultraviolet light to afford the dinuclear compound [Ru2(μ-CO)(CO4{μ-(RO)2PN(R′)P(OR)2}2]. The molecular structure of [Ru2(μ-CO)(CO)4{μ-(MeO)2PN(Et)P(OMe)2}2], which has been determined by X-ray crystallography, is described.  相似文献   

3.
Bis- and, in particular, tetra-substituted ditertiary phosphine and diphosphazane derivatives of [Fe2(CO)9] and [Ru2(CO)9], readily synthesised by reaction of the appropriate bidentate ligand with [Fe2(CO)9] and [Ru3(CO)12], respectively, are very susceptible to electrophilic attack by reagents such as halogens and protons; the solid state structure of one of the products [Fe2(μ-Br)(CO)4 {μ-(PhO)2PN(Et)P(OPh)2}2]PF6 has been determined by X-ray crystallography.  相似文献   

4.
Variable-temperature and -pressure 13C-NMR studies of the 1,3,5-trithiane-capped triruthenium clusters [Ru3(CO)93-(η3-1,3,5-trithiane)}] ( 1 ) and [Ru3(t-BuNC)(CO)83-(η3-1,3,5-trithiane)}] ( 2 ) revealed that CO site exchanges occur via an intramolecular merry-go-round process, involving a transition state mostly dissociative in character.  相似文献   

5.
UV irradiation of [Ru2(CO)4(η-C5H5)2] yields the tri- and tetra-ruthenium complexes [Ru2(CO)4(η-C5H5){η-C5H4Ru(CO)2(η-C5H5)}] and [Ru4(CO)63-C5H4)2(η-C5H5)2]. The μ3-C5H4 ligand in the latter has been characterised through an X-ray diffraction study on [Ru4(CO)5{P(OMe)3}(μ3-C5H4)2(η-C5H5)2].  相似文献   

6.
The complete sequence of reactions in the base‐promoted reduction of [{RuII(CO)3Cl2}2] to [RuI2(CO)4]2+ has been unraveled. Several μ‐OH, μ:κ2‐CO2H‐bridged diruthenium(II) complexes have been synthesized; they are the direct results of the nucleophilic activation of metal‐coordinated carbonyls by hydroxides. The isolated compounds are [Ru2(CO)4(μ:κ2C,O‐CO2H)2(μ‐OH)(NPF‐Am)2][PF6] ( 1 ; NPF‐Am=2‐amino‐5,7‐trifluoromethyl‐1,8‐naphthyridine) and [Ru2(CO)4(μ:κ2C,O‐CO2H)(μ‐OH)(NP‐Me2)2][BF4]2 ( 2 ), secured by the applications of naphthyridine derivatives. In the absence of any capping ligand, a tetranuclear complex [Ru4(CO)8(H2O)23‐OH)2(μ:κ2C,O‐CO2H)4][CF3SO3]2 ( 3 ) is isolated. The bridging hydroxido ligand in 1 is readily replaced by a π‐donor chlorido ligand, which results in [Ru2(CO)4(μ:κ2C,O‐CO2H)2(μ‐Cl)(NP‐PhOMe)2][BF4] ( 4 ). The production of [Ru2(CO)4]2+ has been attributed to the thermally induced decarboxylation of a bis(hydroxycarbonyl)–diruthenium(II) complex to a dihydrido–diruthenium(II) species, followed by dinuclear reductive elimination of molecular hydrogen with the concomitant formation of the RuI? RuI single bond. This work was originally instituted to find a reliable synthetic protocol for the [Ru2(CO)4(CH3CN)6]2+ precursor. It is herein prescribed that at least four equivalents of base, complete removal of chlorido ligands by TlI salts, and heating at reflux in acetonitrile for a period of four hours are the conditions for the optimal conversion. Premature quenching of the reaction resulted in the isolation of a trinuclear RuI2RuII complex [{Ru(NP‐Am)2(CO)}{Ru2(NP‐Am)2(CO)2(μ‐CO)2}(μ33C,O,O′‐CO2)][BF4]2 ( 6 ). These unprecedented diruthenium compounds are the dinuclear congeners of the water–gas shift (WGS) intermediates. The possibility of a dinuclear pathway eliminates the inherent contradiction of pH demands in the WGS catalytic cycle in an alkaline medium. A cooperative binuclear elimination could be a viable route for hydrogen production in WGS chemistry.  相似文献   

7.
Complex Ru3(μ-CO)2(CO)631144-C4Ph2(CH=CHPh)2} containing an open triruthenium framework undergoes rearrangement to the Ru3-triangular Ru3(CO)831142-C4Ph2(CH=CHPh)2) cluster when heated in refluxing hexane. Reactions of the latter complex with PPh3, P(OPri)3, and CO were studied. The structure of one of the reaction products, the Ru3(CO)8(PPh33114-C4Ph2(CH=CHPh)2} cluster, was established by X-ray structural analysis.  相似文献   

8.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

9.
Synthesis and Properties of Heteronuclear Metal Atom Clusters Re4(CO)123-GaRe(CO)5]4 and Re2(CO)8[μ-GaRe(CO)5]2 The title compounds were prepared by the reaction of gallium halides and dirhenium decacarbonyl. Crystals of the four-membered cluster Re2(CO)8[μ-GaRe(CO)5]2 gave at 3000C with aggregation of four Re atoms to an inner Re4 tetrahedron the product Re4(CO)12(CO)[μ3-GaRe(CO)5]4and with Ga2I3 shown by mass spectroscopic measurements the molecule ion Re4(CO)16+. In tetra-hydrofuran solution the cluster Re4(CO)123-GaRe(CO)5]4 and the hydride Li[C2H5)3BH] have formed the formyl complex Li4{Re4(CO)123 -GaRe(CO)4(CHO)] 4}, which was estimated by 1H n. m. r. and i. r. spectroscopic data. Both synthesized gallium rhenium carbonyl clusters were characterized by i.r. spectroscopic measurements. The comparison of these results with those of the structurally known indium rhenium carbonyl clusters led to proposals of the molecule structure of the analogous gallium rhenium compounds.  相似文献   

10.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

11.
Reaction of [Ru3(CO)12] with tri(2-furyl)phosphine, P(C4H3O)3, at 40 °C in the presence of a catalytic amount of Na[Ph2CO] furnishes two triruthenium complexes [Ru3(CO)10{P(C4H3O)3}2] (1) and [Ru3(CO)9{P(C4H3O)3}3] (2) with the ligand coordinated through the phosphorus atom. Treatment of 1 and 2 with Me3NO at 40 °C affords the dinuclear phosphido-bridged complexes [Ru2(CO)6(μ-η12-C4H3O){μ-P(C4H3O)2}] (3) and [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(C4H3O)3}] (4), respectively, that are formed via phosphorus–carbon bond cleavage of a coordinated phosphine followed by coordination of the dissociated furyl moiety to the diruthenium center in a σ,π-alkenyl mode. Reaction of [Ru3(CO)12] with tri(2-furyl)phosphine in refluxing benzene gives, in addition to 3 and 4, low yields of the cyclometallated complex [Ru3(CO)9{μ-η11-P(C4H3O)2(C4H2O)}2] (5). Treatment of 3 with EPh3 (E = P, As, Sb) at room temperature yields the monosubstituted derivatives [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}(EPh3)] (E = P, 8; E = As, 9; E = Sb, 10). Similar reactions of 3 with P(C4H3O)3, P(OMe)3 and ButNC yield 4, [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(OMe)3}] (11) and [Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}(NCBut)] (12), respectively. The molecular structures of complexes 3, 4 and 8 have been elucidated by single crystal X-ray diffraction studies. Each complex contains a bridging σ,π-alkenyl group and while in 4 the phosphine is bound to the σ-coordinated metal atom, in 8 it is at the π-bound atom. Protonation of 3 and 4 gives the hydride complexes [(μ-H)Ru2(CO)6(μ-η12-C4H3O){μ-P(C4H3O)2}]+ (6) and [(μ-H)Ru2(CO)5(μ-η12-C4H3O){μ-P(C4H3O)2}{P(C4H3O)3}]+ (7), respectively, while heating 3 with dimethylacetylenedicarboxylate (DMAD) in refluxing toluene gives the cyclotrimerization product, C6(CO2Me)6.  相似文献   

12.
Treatment of closo-[Ru44-PPh)22-CO)(CO)10] with acetylene under ambient conditions leads to the insertion of the acetylene into the skeletal framework of the cluster and the formation of [Ru44-PPh){μ43-P(Ph)CHCH}(μ2-CO)(CO)10], the structure of which has been determined X-ray crystallographically.  相似文献   

13.
The title compound, cis‐di‐μ‐perfluoroheptanoato‐κ4O:O′‐bis[dicarbonyl(dimethyl sulfoxide‐κS)ruthenium(I)](RuRu), [Ru2(C7F13O2)2(C2H6OS)2(CO)4], is a sawhorse‐type dinuclear ruthenium complex with two bridging perfluoroheptanoate ligands, and with two dimethyl sulfoxide (DMSO) ligands in the axial positions coordinating via the S atoms. It is a new example of a compound with an aliphatic fluorinated carboxylate ligand. The Ru—Ru bond distance of 2.6908 (3) Å indicates a direct Ru—Ru interaction. The compound is an active catalyst in transvinylation of propionic acid with vinyl acetate.  相似文献   

14.
[SnI8{Fe(CO)4}4][Al2Cl7]2 contains the [SnI8{Fe(CO)4}4]2+ cation with an unprecedented highly coordinated, bicapped SnI8 prism. Given the eightfold coordination with the most voluminous stable halide, it is all the more surprising that this SnI8 arrangement is surrounded only by fragile Fe(CO)4 groups in a clip‐like fashion. Inspite of a predominantly ionic bonding situation in [SnI8{Fe(CO)4}4]2+, the I????I? distances are considerably shortened (down to 371 pm) and significantly less than the van der Waals distance (420 pm). The title compound is characterized by single‐crystal structure analysis, spectroscopic methods (EDXS, FTIR, Raman, UV/Vis, Mössbauer), thermogravimetry, and density functional theory methods.  相似文献   

15.
By reacting Mn2(CO)10 and TeI4 in the ionic liquid[BMIm][OTf] (1‐butyl‐3‐methylimidazolium trifluromethanesulfonate), brick‐red crystals of [BMIm][(Te2)3{Mn(CO)3}2{Mn(CO)4}3]are obtained. The title compound contains the carbonyl anion[(Te2)3{Mn(CO)3}2{Mn(CO)4}3]. Herein, three formal Te22– units and two formal Mn(CO)3+ fragments establish a distorted heterocubane‐like Te6Mn2 structure. Three edges of this heterocubane are furthermore capped by Mn(CO)4+ fragments. The resulting Te6Mn5 building unit, moreover, looks very similar to the P113– anion – the so‐called ufosane. The mean distances Te–Te and Te–Mn are observed with 277.6 and 264.7 pm, respectively. In addition to single‐crystal structure analysis, the title compound is characterized by infrared spectroscopy (FT‐IR), thermogravimetry (TG) and energy‐dispersive X‐ray (EDX) analysis.  相似文献   

16.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

17.
Deprotonation of Mn2(μ-H)(μ-PR2)(CO)8 (R = Ph Cy) for Synthesis of Heteronuclear Manganese-Gold Clusters with Mn2Aun Cores (n = 1–3) The dimanganese complexes Mn2(μ-H)(μ-PR2)(CO)8 (R = Ph, Cy) have been deprotonated with 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) in tetrahydrofuran solution at 20°C to give the anions [Mn2(μ-PR2)(CO)8]?, which were isolated as tetraethylammonium salts. Both dimanganese complexes and the related anions were measured by cyclic voltammetry. The treatment of the aforementioned dimanganese complexes in thf solution with Lir' (R =Me, Ph) and subsequently with PPh3AuCl gave at 20°C three types of products: Mn2(μ-PR2(CO)8(AuPPh3),Mn2(μ-PR2)(μ-C(R′)O)(CO)6-(AuPPh3)2 and Mn2(μ-PR2)(CO)6(AuPPh3)3. The newly prepared substances were characterized by means of IR-, UV/VIS, 31P NMR data. The results of single X-ray analyses showed for the three-membered metal ring compound Mn2(μ-PPh2)(CO)8(AuPPh3) an uni-fold bridged σ(Mn? Mn) bond length of 306.7(3) pm, the metallatetrahedron complex Mn2(μ-PPh3)(μ-C(Ph)O(CO)6(AuPPh3)2 a twofold bridged σ(Mn? Mn) bond length of 300.6(4) pm and the trigonal-bipyramidal cluster Mn2(μ-Pph2)(CO)6(AuPPh3)3 an uni-fold bridged π(Mn? Mn) bond length of 274.7(3) pm. The Mn? Au bonds of these substances are accompanyied by semi-bridging CO ligands which are signified through short Au…C contact lengths in the range of 251 to 270 pm. In the substance with the Mn2Au2 metallatetrahedron core exists, additionally, such a contact with the acylic C atom of C(Ph)O bridging group of 263.4(18) pm. Such contact lengths were compared for corresponding dimanganese and dirhenium complexes.  相似文献   

18.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

19.
Treatment of [Rh2Cl2(CO)2 {μ-(PhO)2PN(Et)P(OPh)2}2] with various reducing agents gives a number of products, the type depending on the conditions employed. The products isolated include [Rh2(CO)2{μ-(PhO)2PN(Et)P(OPh)2}2], [Rh2(CO)3{μ-(PhO)2PN(Et)P(OPh)2}2],and [Rh2HgCl(μ-H)(CO)2{μ-(PhO)2PN(Et)P(OPh)2}2]; the structure of the last complex was determined by X-ray diffraction.  相似文献   

20.
The clectrochemical behaviour of the complexes [RuII(L)(CO)2Cl2], [RuII(L)(CO)Cl3][Me4N] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 (L = 2,2′-bipyridine or 4,4′-isopropoxycarbonyl-2,2′-bipyridine) has been investigated in CH3CN. The oxidation of [Ru(L)(CO)2Cl2] produces new complexes [RuIII(L)(CO)(CH3CN)2Cl]2+ as a consequence of the instability of the electrogenerated transient RuIII species [RuIII(L)(CO)2Cl2]+. In contrast, the oxidation of [RuII(L)(CO)Cl3][Me4N] produces the stable [RuIII(L)(CO)Cl3] complex. In contrast [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 is not oxidized in the range up to the most positive potentials achievable. The reduction of [RuII(L)(CO)2Cl2] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 results in the formation of identical dark blue strongly adherent electroactive films. These films exhibit the characteristics of a metal-metal bond dimer structure. No films are obtained on reduction of [RuII(L)(CO)Cl3][Me4N]. The effect of the substitution of the bipyridine ligand by electron-withdrawing carboxy ester groups on the electrochemical behaviour of all these complexes has also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号