首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate coefficients of the reactions of NCO radicals with NO and NO2: (1) NCO + NO → products (293–836 K) and : (2) NCO + NO2 → products (294–774 K) were measured by means of laser photolysis and laser induced fluorescence technique in the indicated temperature ranges. NCO radicals were produced from the reaction of CN, from photodissociation of ICN or BrCN, with O2. The concentration of NCO was monitored with a dye laser set at 414.95 nm. We determined k1 = 1.73 × 10?5 T?2.01 exp(?470/T) cm3 molecule?1 s?1 that agrees with published results at room temperature and confirms the temperature dependence of an early report. A non-Arrhenius negative temperature dependence of k2 was observed in this work that agrees satisfactorily with results for a shock tube18 near 1250 K. We obtained k2 = 6.4 × 10?10 T?0.646 exp(164/T) cm3 molecule?1 s?1 for 1250 K ≥ T ≥ 294 K by combining data of these two measurements. Our result at 294 K and the temperature dependence disagree with results of two previous investigations. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
When bromoform (CHBr3) is photolyzed at 266 or 303 nm in the presence of O2 and NO, the formation of secondary Br atoms is observed. By following the rate of growth of this secondary Br atom signal as a function of conditions, rate constants have been determined for the reactions CHBr2 + O2, CHBr2 + NO (both pressure-dependent), and CHBr2O2 + NO (k(2a) = (1.74 +/- 0.16) x 10(-11) cm3 molecule(-1) s(-1) at 23 degrees C). By measuring the amplitude of the secondary Br signal compared to the primary Br formed in the initial photolysis, it is established that the CHBr2O radical spontaneously decomposes to form CHBrO + Br at least 90%, and probably 100%, of the time, in agreement with previous work and with recent ab initio calculations. A survey of four other polybrominated methanes, CH2Br2, CHClBr2, CF2Br2, and CBr4, shows that they all generate secondary Br atoms when photolyzed at 266 nm in the presence of O2 and NO, suggesting that their reaction sequences are similar to that of bromoform.  相似文献   

3.
The reactions Br + NO2 + M → BrNO2 + M (1) and I + NO2 + M → INO2 + M (2) have been studied at low pressure (0.6-2.2 torr) at room temperature and with helium as the third body by the discharge-flow technique with EPR and mass spectrometric analysis of the species. The following third order rate constants were found k1(0) = (3.7 ± 0.7) × 10?31 and k2(0) = (0.95 ± 0.35) × 10?31 (units are cm6 molecule?2 s?1). The secondary reactions X + XNO2X2 + NO2 (X = Br, I) have been studied by mass spectrometry and their rate constants have been estimated from product analysis and computer modeling.  相似文献   

4.
Mixtures of N2O, H2, O2, and trace amounts of NO and NO2 were photolyzed at 213.9 nm, at 245°–328°K, and at about 1 atm total pressure (mostly H2). HO2 radicals are produced from the photolysis and they react as follows: Reaction (1b) is unimportant under all of our reaction conditions. Reaction (1a) was studied in competition with reaction (3) from which it was found that k1a/k31/2 = 6.4 × 10?6 exp { z?(1400 ± 500)/RT} cm3/2/sec1/2. If k3 is taken to be 3.3 × 10?12 cm3/sec independent of temperature, k1a = 1.2 × 10?11 exp {?(1400 ± 500)/RT} cm3/sec. Reaction (2a) is negligible compared to reaction (2b) under all of our reaction conditions. The ratio k2b/k1 = 0.61 ± 0.15 at 245°K. Using the Arrhenius expression for k1a given above leads to k2b = 4.2 × 10?13 cm3/sec, which is assumed to be independent of temperature. The intermediate HO2NO2 is unstable and induces the dark oxidation of NO through reaction (?2b), which was found to have a rate coefficient k?2b = 6 × 1017 exp {?26,000/RT} sec?1 based on the value of k1a given above. The intermediate can also decompose via Reaction (10b) is at least partially heterogeneous.  相似文献   

5.
The kinetics and nitrated products of the gas-phase reactions of the NO3 radical with methoxybenzene, 1,2-, 1,3-, and 1,4-dimethoxybenzene, dibenzofuran and dibenzo-p-dioxin have been investigated at 297 ± 2 K and in the presence of one atmosphere of air. A relative rate method was used for the kinetic measurements. No reactions of methoxybenzene or dibenzofuran with the NO3 radical were observed. The dimethoxybenzenes were observed to react by H-atom abstraction and NO3 radical addition to the aromatic ring, while dibenzo-p-dioxin reacted by NO3 radical addition to the aromatic rings. For these compounds, the NO3 radical addition pathways were observed to be reversible. At the NO2 concentrations employed, the NO3-aromatic adducts reacted with NO2 and the observed rate constants increased with increasing NO2 concentration. However, for dibenzo-p-dioxin the observed rate constant became independent of the NO2 concentration for concentrations ≥ 4.8 × 1013 molecule cm?3, and under these conditions the rate constant of 6.8 × 10?14 cm3 molecule?1 s?1 was taken to be that for addition of the NO3 radical to the aromatic rings. The proposed NO3 radical reaction mechanisms are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The reactions of CCl3 with O(3P) and O2 and those of CCl3O2 with NO have been studied at 295 K using discharge flow methods with helium as the bath gas. The rate coefficient for the reaction of CCl3 with O was found to be (4.2 ± 0.6) × 10?11 cm3/s and that for CCl3O2 with NO was (18.6 ± 2.8) × 10?12 cm3/s with both coefficients independent of [He]. For reaction between CCl3 and O2 the rate coefficient was found to increase from 1.51 7times; 10?14 cm3/s to 7.88 × 10?14 cm3/s as the [He] increased from 3.5 × 1016 cm?3 to 2.7 × 1017 cm?3. There was no evidence for a direct two-body reaction, and it is concluded that the only product of this reaction is CCl3O2. Examination of these results for CCl3 + O2 in terms of current simplified falloff treatment suggests that the high-pressure limit for this reaction is ~ 2.5 × 10?12 cm3/s, which may be compared with a direct measurement of the high-pressure limit of 5 × 10?12 cm3/s. A value of (5.8 ± 0.6) × 10?31 cm6/s has been obtained for k0, the coefficient in the low-pressure region. This value is compared with corresponding values found earlier for the (CH3, O2) and (CF3, O2) systems and with estimates based on unimolecular rate theory.  相似文献   

7.
The thermal decomposition of NO2 and its atom-transfer reactions with SO2 and CO have been studied behind incident shock waves using photometric detection methods. From the decomposition study it is possible to obtain information on the rate of the reaction 2NO2antisymmetric-NO3 + NO. The results on the reaction, NO2 + SO2 → NO + SO3 extend the earlier work of Armitage and Cullis to about 2000°K. The reaction with CO [NO2 +] [CO NO + CO2] at shock temperatures is somewhat faster than predicted from available low-temperature data and provides a modification of the rate-constant expression that is applicable over a wide temperature range.  相似文献   

8.
The rate constants for the reactions of NO2 with SH and SD were measured between 250 and 360 K to be 2.8 x 10(-11) exp{(270+/-40)/T(K)} and 2.6x10(-11) exp{(285+/-20)/T(K)} cm3 molecule-1 s-1, respectively. SH(SD) radicals were generated by pulsed laser photolysis of H2S(D2S) or CH3SH and detected via pulsed laser-induced fluorescence. The laser-induced fluorescence excitation spectrum of SH was found to be contaminated by the presence of the SO radical. This contamination is suggested as a possible reason for differences among some of the reported values of k1 in the literature. The title reaction influences the atmospheric lifetime of the SH radical when NO2 is greater than 100 pptv, but the revised value of k1 does not significantly alter our current understanding of SH oxidation in the atmosphere.  相似文献   

9.
A fluorescence excitation spectrum of (CH3)2CHO (isopropoxy radical) is reported following photolysis of isopropyl nitrite at 355 nm. Rate constants for the reaction of isopropoxy with NO, NO2, and O2 have been measured as a function of pressure (1–50 Torr) and temperature (25–110°C) by monitoring isopropoxy radical concentrations using laser-induced fluorescence. We have obtained the following Arrhenius expressions for the reaction of isopropoxy with NO and O2 respectively: (1.22±0.28)×10?11 exp[(+0.62±0.14 kcal)/RT]cm2/s and (1.51±0.70)×10?14 exp[(?0.39±0.28)kcal/RT]cm3/s where the uncertainties represent 2σ. The results with NO2 are more complex, but indicate that reaction with NO2 proceeds more rapidly than with NO contrary to previous reports. The pressure dependence of the thermal decomposition of the isopropoxy radical was studied at 104 and 133°C over a 300 Torr range using nitrogen as a buffer gas. The reaction is in the fall-off region over the entire range. Upper limits for the reaction of isopropoxy with acetaldehyde, isobutane, ethylene, and trimethyl ethylene are reported.We have performed the first LIF study of the isopropoxy radical. Arrhenius parameters were measured for the reaction of i-PrO with O2, NO, NO2, using direct radical measurement techniques. All reactions are in their high-pressure limits at a few Torr of pressure. The rate constant for the reactions of i-PrO with NO and NO2 reactions exhibit a small negative activation energy. Studies of the i-PrO + NO2 reaction produce data which indicate that O(3P) reacts rapidly with i-PrO. Unimolecular decomposition studies of i-PrO indicate that the reaction is in the fall-off region between 1 and 300 Torr of N2 and the high-pressure limit is above 1 atmosphere of N2.  相似文献   

10.
《Chemical physics letters》1985,115(2):180-186
Rate coefficients for the reaction of CH3O with NO2 were measured over the temperature range 220–473 K and over the pressure range 0.6–4.0 Torr using a flow reactor apparatus with laser-induced fluorescence (LIF) detection of CH3O. The results were fitted to extract recombination and disproportionation rate constants. Combined with previous indirect studies at higher pressure, they suggest that the reaction proceeds not through a single complex but by separate paths, with disproportionation occurring by direct H-atom abstraction.  相似文献   

11.
The kinetics of the HCCO + NO2 reaction were investigated using a laser photolysis/infrared diode laser absorption technique. Ethyl ethynyl ether (C2H5OCCH) was used as the HCCO radical precursor. Transient infrared detection of the HCCO radical was used to determine a total rate constant fit to the following expression: k1= (2.43 +/- 0.26) x 10(-11) exp[(171.1 +/- 36.9)/T] cm3 molecule(-1) s(-1) over the temperature range of 298-423 K. Transient infrared detection of CO, CO2, and HCNO products was used to determine the following branching ratios at 298 K: phi(HCO + NO + CO) = 0.60 +/- 0.05 and phi(HCNO + CO2) = 0.40 +/- 0.05.  相似文献   

12.
The kinetics of the NCCO + NO(2) reaction was studied by transient infrared laser absorption spectroscopy. The total rate constant of the reaction was measured to be k = (2.1 ± 0.1) × 10(-11) cm(3) molecule(-1) s(-1) at 298 K. Detection of products and consideration of possible secondary chemistry shows that CO(2) + NO + CN is the primary product channel. The rate constants of the NCCO + CH(4) and NCCO + C(2)H(4) reactions were also measured, obtaining upper limits of k (NCCO + CH(4)) ≤ 7.0 × 10(-14) cm(3) molecule(-1) s(-1) and k (NCCO + C(2)H(4)) ≤ 5.0 × 10(-15) cm(3) molecule(-1) s(-1). Ab initio calculations on the singlet and triplet potential energy surfaces at B3LYP/6-311++G**//CCSD(T)/6-311++G** levels of theory show that the most favorable reaction pathway occurs on the singlet surface, leading to CO(2) + NO + CN products, in agreement with experiment.  相似文献   

13.
The rate constants for the reaction of CN with N2O and CO2 have been measured by the laser dissociation/laser-induced fluorescence (two-laser pump-probe) technique at temperatures between 300 and 740 K. The rate of CN + N2O was measurable above 500 K, with a least-squares averaged rate constant, k = 10−11.8±0.4 exp(−3560 ± 181/T) cm3/s. The rate of CN + CO2, however, was not measurable even at the highest temperature reached in the present work, 743 K, with [CO2] ⩽ 1.9 × 1018 molecules/cm3. In order to rationalize the observed kinetics, quantum mechanical calculations based on the BAC-MP4 method were performed. The results of these calculations reveal that the CN + N2O reaction takes place via a stable adduct NCNNO with a small barrier of 1.1 kcal/mol. The adduct, which is more stable than the reactants by 13 kcal/mol, decomposes into the NCN + NO products with an activation energy of 20.0 kcal/mol. This latter process is thus the rate-controlling step in the CN + N2O reaction. The CN + CO2 reaction, on the other hand, occurs with a large barrier of 27.4 kcal/mol, producing an unstable adduct NCOCO which fragments into NCO + CO with a small barrier of 4.5 kcal/mol. The large overall activation energy for this process explains the negligibly low reactivity of the CN radical toward CO2 below 1000 K. Least-squares analyses of the computed rate constants for these two CN reactions, which fit well with experimental data, give rise to for the temperature range 300–3000 K.  相似文献   

14.
The reaction of CF3 with NO2 was studied at 296 ± 2K using two different absolute techniques. Absolute rate constants of (1.6 ± 0.3) × 10−11 and (2.1 −0.3+07) × 10−11 cm3 molecule−1 s−1 were derived by IR fluorescence and UV absorption spectroscopy, respectively. The reaction proceeds via two reaction channels: CF3 + NO2 → CF2O + FNO, (70 ± 12)% and CF3 + NO2 → CF3O + NO, (30 ± 12)%. An upper limit of 11% for formation of other reaction products was determined. The overall rate constant was within the uncertainty independent of total pressure between 0.4 to 760 torr. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The kinetics of the CH2I + NO2, CH2Br + NO2, and CHBrCl + NO2 reactions have been studied at temperatures between 220 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time-resolved measurements to obtain reaction rate coefficients under pseudo-first-order conditions. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (2-6 Torr) and are found to depend on temperature as follows: k(CH2I + NO2) = (2.18 +/- 0.07) x 10(-11) (T / 300 K)(-1.45) (+/- 0.22) cm3 molecule(-1) s(-1) (220-363 K), k(CH2Br + NO2) = (1.76 +/- 0.03) x 10(-11) (T/300 K)(-0.86) (+/- 0.09) cm3 molecule(-1) s(-1) (221-363 K), and k(CHBrCl + NO2) = (8.81 +/- 0.28) x 10(-12) (T/300 K)(-1.55) (+/- 0.34) cm3 molecule(-1) s(-1) (267-363 K), with the uncertainties given as one-standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are about +/-25%. In the CH2I + NO2 and CH2Br + NO2 reactions, the observed product is formaldehyde. For the CHBrCl + NO2 reaction, the product observed is CHClO. In addition, I atom and iodonitromethane (CH2INO2) or iodomethyl nitrite (CH2IONO) formations have been detected for the CH2I + NO2 reaction.  相似文献   

16.
The kinetics of the reaction between NO2 and ([14]aneN4)Ni2+ were determined by laser flash photolysis. The NO2 was generated in two independent reactions, one of which is based on the photochemistry of (NH3)5CoNO22+, and the other on the photochemistry of HNO2/NO2?. The results from both sets of experiments yielded a consistent value for the rate constant, k1 = 1.2 × 108 M?1 s?1 in aqueous solutions at pH 1–4. There was no evidence for the reverse reaction. NO2 reacts with Feaq2+ more slowly, kFe ~ 2 × 105 M?1 s?1. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 278–281, 2002  相似文献   

17.
Rate constants have been determined at 296 ± 2 K for the gas phase reaction of NO3 radicals with a series of aromatics using a relative rate technique. The rate constants obtained (in cm3 molecule?1 s?1 units) were: benzene, <2.3 × 10?17; toluene, (1.8 ± 1.0) × 10?17; o? xylene, (1.1 ± 0.5) × 10?16; m? xylene, (7.1 ± 3.4) × 10?17; p? xylene, (1.4 ± 0.6) × 10?16; 1,2,3-trimethylbenzene, (5,6 ± 2.6) × 10?16; 1,2,4-trimethylbenzene (5.4 - 2.5) × 10?16; 1,3,5-trimethylbenzene, (2.4 ± 1.1) × 10?16; phenol, (2.1 ± 0.5) × 10?12; methoxybenzene, (5.0 ± 2.8) × 10?17; o-cresol, (1.20 ± 0.34) × 10?11; m-cresol, (9.2 ± 2.4) × 10?12; p-cresol, (1.27 ± 0.36) × 10?11; and benzaldehyde, (1.13 ± 0.25) × 10?15. These kinetic data, together with, in the case of phenol, product data, suggest that these reactions proceed via H-atom abstraction from the substituent groups. The magnitude of the rate constants for the hydroxy-substituted aromatics indicates that the nighttime reaction of NO3 radicals with these aromatics can be an important loss process for both NO3 radicals and these organics, as well as being a possible source of nitric acid, a key component of acid deposition.  相似文献   

18.
The release of NO and NO2 from frozen aqueous NaNO3 irradiated at 313 nm was studied using time-resolved spectroscopic techniques. The kinetic behavior of NO and NO2 signals during on-and-off illumination cycles confirms that NO2 is a primary photoproduct evolving from the outermost ice layers and reveals that NO is a secondary species generated deeper in the ice, whence it eventually emerges due to its inertness and larger diffusivity. NO is shown to be more weakly held than NO2 by ice in thermal desorption experiments on preirradiated samples. The partial control of gaseous emissions by mass transfer, and hence by the morphology and metamorphisms of polycrystalline ice, is established by (1) the nonmonotonic temperature dependence of NO and NO2 signals upon stepwise warming under continuous illumination, (2) the fact that the NO, NO2 or NOx (NOx identical with NO + NO2) amounts released in bright thermograms performed under various heating ramps fail to scale with photon dose, due to irreversible losses in the adsorbed state. Because present NO/NO2 ratios are up to 10-fold smaller than those determined over sunlit snowpacks, we infer that the immediate precursors to NO mostly absorb at lambda > lambda(max) (NO3-) approximately 302 nm.  相似文献   

19.
Using relative rate methods, rate constants for the gas-phase reactions of divinyl sulfoxide [CH 2CHS(O)CHCH 2; DVSO] with NO 3 radicals and O 3 have been measured at 296 +/- 2 K, and rate constants for the reaction with OH radicals have been measured over the temperature range of 277-349 K. Rate constants obtained for the NO 3 radical and O 3 reactions at 296 +/- 2 K were (6.1 +/- 1.4) x 10 (-16) and (4.3 +/- 1.0) x 10 (-19) cm (3) molecule (-1) s (-1), respectively. For the OH radical reaction, the temperature-dependent rate expression obtained was k = 4.17 x 10 (-12)e ((858 +/- 141)/ T ) cm (3) molecule (-1) s (-1) with a 298 K rate constant of (7.43 +/- 0.71) x 10 (-11) cm (3) molecule (-1) s (-1), where, in all cases, the errors are two standard deviations and do not include the uncertainties in the rate constants for the reference compounds. Divinyl sulfone was observed as a minor product of both the OH radical and NO 3 radical reactions at 296 +/- 2 K. Using in situ Fourier transform infrared spectroscopy, CO, CO 2, SO 2, HCHO, and divinyl sulfone were observed as products of the OH radical reaction, with molar formation yields of 35 +/- 11, 2.2 +/- 0.8, 33 +/- 4, 54 +/- 6, and 5.4 +/- 0.8%, respectively, in air. For the experimental conditions employed, aerosol formation from the OH radical-initiated reaction of DVSO in the presence of NO was minor, being approximately 1.5%. The data obtained here for DVSO are compared with literature data for the corresponding reactions of dimethyl sulfoxide.  相似文献   

20.
Far-infrared rotational transitions in ClO(X23/2, υ = 0) have been observed using laser magnetic resonance (LMR) with an optically pumped spectrometer. Five observed transitions at wavelengths between 444 and 713 µm have been compared with values predicted with spectroscopic constants from the literature. LMR detection of ClO has been used to study its reactions with NO and NO2 in a discharge flow system under pseudo-first-order conditions for ClO. The measured rate constants are k(ClO + NO) = (7.1 ± 1.4) × 10?12 exp[(270 ± 50)/T] cm3/molec·s for the temperature range of 202 < T < 393 K; k(ClO + NO2 + M) = (2.8 ± 0.6) × 10?33 exp[(1090 ± 80)/T] cm6/molec2·s (M = He, 250 < T < 387 K), (3.5 ± 0.6) × 10?33 exp[(1180 ± 80)/T] (M = O2, 250 < T < 416 K), and (2.09 ± 0.3) × 10?31 (M = N2, T = 297 K). All measurements were made at low pressures, between 0.6 and 6.6 torr. These results are compared with those from other studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号