首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bicyclic and tricyclic meso-N-(methylsulfonyl)dicarboximides 1a–f are converted enantioselectively to isopropyl [(sulfonamido)carbonyl]-carboxylates 2a–f by diisopropoxytitanium TADDOLate (75–92% yield; see Scheme 3). The enantiomer ratios of the products are between 86:14 and 97:3, and recrystallization from CH2Cl2/hexane leads to enantiomerically pure sulfonamido esters 2 (Scheme 3). The enantioselectivity shows a linear relationship with the enantiomer excess of the TADDOL employed (Fig.3). Reduction of the ester and carboxamide groups (LiAlH4) and additional reductive cleavage of the sulfonamido group (Red-Al) in the products 2 of imide-ring opening gives hydroxy-sulfonamides 3 and amino alcohols 4 , respectively (Scheme 4). The absolute configuration of the sulfonamido esters 2 is determined by chemical correlation (with 2a,b ; Scheme 6), by the X-ray analysis of the camphanate of 3e (Fig. 1), and by comparative 19F-NMR analysis of the Mosher esters of the hydroxy-sulfonamides 3 (Table 1). A general proposal for the assignment of the absolute configuration of primary alcohols and amines of Formula HXCH2CHR1R2, X = O, NH, is suggested (see 11 in Table 1). It follows from the assignment of configuration of 2 that the Re carbonyl group of the original imide 1 is converted to an isopropyl ester group. This result is compatible with a rule previously put forward for the stereochemical course of reactions involving titanium TADDOLate activated chelating electrophiles ( 12 in Scheme 7). A tentative mechanistic model is proposed ( 13 and 14 in Scheme 7).  相似文献   

2.
On triplet excitation (E)- 2 isomerizes to (Z)- 2 and reacts by cleavage of the C(γ), O-bond to isomeric δ-ketoester compounds ( 3 and 4 ) and 2,5-dihydrofuran compounds ( 5 and 19 , s. Scheme 1). - On singulet excitation (E)- 2 gives mainly isomers formed by cleavage of the C(γ), C(δ)-bond ( 6–14 , s. Scheme 1). However, the products 3–5 of the triplet induced cleavage of the C(γ), O-bond are obtained in small amounts, too. The conversion of (E)- 2 to an intermediate ketonium-ylide b (s. Scheme 5) is proven by the isolation of its cyclization product 13 and of the acetals 16 and 17 , the products of solvent addition to b . - Excitation (λ = 254 nm) of the enol ether (E/Z)- 6 yields the isomeric α, β-unsaturated ε-ketoesters (E/Z)- 8 and 9 , which undergo photodeconjugation to give the isomeric γ, δ-unsaturated ε-ketoesters (E/Z)- 10 . - On treatment with BF3O(C2H5)2 (E)- 2 isomerizes by cleavage of the C(δ), O-bond to the γ-ketoester (E)- 20 (s. Scheme 2). Conversion of (Z)- 2 with FeCl3 gives the isomeric furan compound 21 exclusively.  相似文献   

3.
Cob(I)alamin as Catalyst. 5. Communication [1]. Enantioselective Reduction of α,β-Unsaturated Carbonyl Derivatives The cob(I)alamin-catalyzed reduction of an α,β-unsaturated ethyl ester in aqueous acetic acid produced the (S)-configurated saturated derivative 2 with an enantiomeric excess of 21%. The starting material 1 is not reduced at pH = 7.0 in the presence of catalytic amounts of cob(I)alamin (see Scheme 2). It is shown that the attack of cob(I)alamin and not of cob(II)alamin, also present in Zn/CH3COOH/H2O, accounts for the enantioselective reduction observed. All the (Z)-configurated starting materials 1 , 3 , 5 , 7 , 9 and 11 have been transformed to the corresponding (S)-configurated saturated derivatives 2 , 4 , 6 , 8 , 10 and 12 , respectively. The highest enantiomeric excess revealed to be present in the saturated product 12 (32,7%, S) derived from the (Z)-configurated methyl ketone 11 (see Scheme 3 and Table 1). The reduction of the (E)-configurated starting materials led mainly to racemic products. A saturated product having the (R)-configuration with a rather weak enantiomeric excess (5.9%) has been obtained starting from the (E)-configurated methyl ketone 23 (see Scheme 5 and Table 2). The allylic alcohols 16 and 24 have been reduced to the saturated racemic derivative 17 .  相似文献   

4.
Oxidations of 5α‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 8 ) with Pb(OAc)4 under thermal or photolytic conditions or in the presence of iodine afforded only complex mixtures of compounds. However, the HgO/I2 version of the hypoiodite reaction gave as the primary products the stereoisomeric (Z)‐ and (E)‐1(10)‐unsaturated 5,10‐seco B‐nor‐derivatives 10 and 11 , and the stereoisomeric (5R,10R)‐ and (5S,10S)‐acetals 14 and 15 (Scheme 4). Further reaction of these compounds under conditions of their formation afforded, in addition, the A‐nor 1,5‐cyclization products 13 and 16 (from 10 ) and 12 (from 11 ) (see also Scheme 6) and the 6‐iodo‐5,6‐secolactones 17 and 19 (from 14 and 15 , resp.) and 4‐iodo‐4,5‐secolactone 18 (from 15 ) (see also Scheme 7). Oxidations of 5β‐hydroxy‐B‐norcholestan‐3β‐yl acetate ( 9 ) with both hypoiodite‐forming reagents (Pb(OAc)4/I2 and HgO/I2) proceeded similarly to the HgO/I2 reaction of the corresponding 5α‐hydroxy analogue 8 . Photolytic Pb(OAc)4 oxidation of 9 afforded, in addition to the (Z)‐ and (E)‐5,10‐seco 1(10)‐unsaturated ketones 10 and 11 , their isomeric 5,10‐seco 10(19)‐unsaturated ketone 22 , the acetal 5‐acetate 21 , and 5β,19‐epoxy derivative 23 (Scheme 9). Exceptionally, in the thermal Pb(OAc)4 oxidation of 9 , the 5,10‐seco ketones 10, 11 , and 22 were not formed, the only reaction being the stereoselective formation of the 5,10‐ethers with the β‐oriented epoxy bridge, i.e. the (10R)‐enol ether 20 and (5S,10R)‐acetal 5‐acetate 21 (Scheme 8). Possible mechanistic interpretations of the above transformations are discussed.  相似文献   

5.
Novel, more reliable and general reaction conditions for the α-alkylation of 4-monosubstituted 2-phenyloxazol-5(4H)-ones ( = 4-monosubstituted 2-phenyl-azlactones) rac- 2 to 4,4-disubstituted 2-phenyloxazol-5(4H)-ones rac- 1 were found (Scheme 2). Thus, a whole range of highly functionalized rac- 1 were prepared in medium-to-good overall yields (40-90%, see Table). Azlactones rac- 1 are ideal precursors for the synthesis of optically pure α,α -disubstituted (R)- and (S)-α-amino acids.  相似文献   

6.
The course of the catalytic hydrogenation and isomerization (H2/Raney-Ni/dioxane or H2/Pd/C/EtOH) of Δ5.7-, Δ7-, Δ8-, and Δ8(14)-steroid olefins was shown to depend strongly on the configuration at C(13). The known hydrogenation/isomerization of reactions of Δ5.7-dienes in the 13β-series to Δ7-(H2/Raney-Ni/dioxane) and Δ8(14)-olefins (H2/Pd/C/EtOH) were also confirmed in the 3β, 19-epoxy-13β- and 3-Oxo-19-acetoxy-13β-steroid series (e.g. 32 → 35 → 37 , Scheme 3). On the other hand, in the corresponding 13α-steroid series the same reactions afforded the Δ7-. and the Δ8-olefins (mixture of products with H2/Raney-Ni/dioxane; quantitatively the Δ8-compounds with H2/Pd/C/EtOH; s. e.g. Scheme 3). A similar dependence on the C(13) configuration was observed in the allylic oxidation of these olefins with SeO2 (Fieser's test, see Table), and in the acid catalyzed opening of the 7α, 8α-epoxides (e.g. 60 → 62 + 63 in the 13β-series, and 56 → 64 + 65 in the 13α-series, Scheme 8).  相似文献   

7.
The reactions of α-diazo ketones 1a,b with 9H-fluorene-9-thione ( 2f ) in THF at room temperature yielded the symmetrical 1,3-dithiolanes 7a,b , whereas 1b and 2,2,4,4-tetramethylcyclobutane-1,3-dithione ( 2d ) in THF at 60° led to a mixture of two stereoisomeric 1,3-oxathiole derivatives cis- and trans- 9a (Scheme 2). With 2-diazo-1,2-diphenylethanone ( 1c ), thio ketones 2a–d as well as 1,3-thiazole-5(4H)-thione 2g reacted to give 1,3-oxathiole derivatives exclusively (Schemes 3 and 4). As the reactions with 1c were more sluggish than those with 1a,b , they were catalyzed either by the addition of LiClO4 or by Rh2(OAc)4. In the case of 2d in THF/LiClO4 at room temperature, a mixture of the monoadduct 4d and the stereoisomeric bis-adducts cis- and trans- 9b was formed. Monoadduct 4d could be transformed to cis- and trans- 9b by treatment with 1c in the presence of Rh2(OAc)4 (Scheme 4). Xanthione ( 2e ) and 1c in THF at room temperature reacted only when catalyzed with Rh2(OAc)4, and, in contrast to the previous reactions, the benzoyl-substituted thiirane derivative 5a was the sole product (Scheme 4). Both types of reaction were observed with α-diazo amides 1d,e (Schemes 5–7). It is worth mentioning that formation of 1,3-oxathiole or thiirane is not only dependent on the type of the carbonyl compound 2 but also on the α-diazo amide. In the case of 1d and thioxocyclobutanone 2c in THF at room temperature, the primary cycloadduct 12 was the main product. Heating the mixture to 60°, 1,3-oxathiole 10d as well as the spirocyclic thiirane-carboxamide 11b were formed. Thiirane-carboxamides 11d–g were desulfurized with (Me2N)3P in THF at 60°, yielding the corresponding acrylamide derivatives (Scheme 7). All reactions are rationalized by a mechanism via initial formation of acyl-substituted thiocarbonyl ylides which undergo either a 1,5-dipolar electrocyclization to give 1,3-oxathiole derivatives or a 1,3-dipolar electrocyclization to yield thiiranes. Only in the case of the most reactive 9H-fluorene-9-thione ( 2f ) is the thiocarbonyl ylide trapped by a second molecule of 2f to give 1,3-dithiolane derivatives by a 1,3-dipolar cycloaddition.  相似文献   

8.
Homogeneous asymmetric hydrogenation of a wide range of methyl and tert-butyl (Z)-2-(acylamino)-3-(heteroaryl)acrylates (see 1a–f and 2a–d, f, g , resp.) catalyzed by diphosphinerhodium catalysts was studied for the synthesis of enantiomerically pure 3-furyl-, 3-thienyl-, and 3-pyrrolylalanines (see 3a–f , and 4a–d, g ; Scheme 1). The precursors, the (Z)-α-amino-α,β-didehydro esters 1a–f and 2a–d, f, g were prepared in high yields using the phosphorylglycine-ester method (Scheme 1). Isomerically pure (Z)-α-amino-α,β-didehydro esters were required to obtain the highest enantiomeric excesses (ee's) in the asymmetric hydrogenation, and the tert-butyl-ester strategy was beneficial in terms of both getting pure (Z)-α-amino-α,β-didehydro esters and obtaining high ee's in the hydrogenation. Finally, in contrast to the methyl-ester series, deprotection of the tert-butyl esters 4a–d, g was easily performed using CF3CO2H without any racemization.  相似文献   

9.
Optically Active 3-Amino-2H-azirines as Synthons for Enantiomerically Pure αα-Disubstituted α-Amino Acids: Synthesis of the α-Methylphenylalanine Synthons and Some Model Peptides The synthesis of a novel 2-benzyl-2-methyl-3-amino-2H-azirine derivative with a chiral amino group is described. Chromatographic separation of the diastereoisomer mixture yielded the pure diastereoisomers 9a and 9b (Scheme 4) which are the D - and L -2-methylphenylalanine ((α-Me)Phe) synthons, respectively. The reaction of 9a and 9b with thiobenzoic acid and with Z-leucine yielded the monothiodiamides 10a and 10b (Scheme 5) and the dipeptide derivatives 11a and 11b (Scheme 6), respectively. Methanolysis of 11b yielded 12b . The absolute configuration of 10a was established by X-ray crystallography. The absolute configuration of (α-Me)Phe in 12b has been deduced from the known configuration of L -leucine.  相似文献   

10.
Steroselective Alkylation at C(α) of Serine, Clyceric Acid, Threonine, and Tartaric Acid Involving Heterocyclic Enolates with Evocyelic Double Bonds The chiral, non-racemic title acids are converted to methyl dioxolane-(cf. 13 ), oxazoline-( 4 ) and oxazolidinecarboxylates (cf. 9 ). Deprotonation by Li(i-Pr) 2N at dry-ice temperature gives solutions of the lithium enolates A–D With exocyclic enolate double bonds. These are stable crough with respect to β-elimination (Scheme 1) to be alkylated with or without cosolvents such as HMPA or DMPU The products are formed in good to excellent yields and, with the exception of the tartrate-derived acetonlde (see Scheme 2), with diastereoselectivities above 90%. While the tartrate-and threonine-derived enolates ( A and B , resp.) are chiral due to the second stereogenic center of the precursors, the serine- and glyceric-acid-derived enolates ( A and B , resp.) are chiral due to the second sterogenic center of the precursors, the serine-nd glyceric-acid-derived enolates are non-racemic due to a tert butyl-substituted (pivalaldehyde-derived) acetal center ( C and D , resp.). The products of alkylation can be hydrolyzed to give α-branched tartaric acid (Scheme 2), allothreonine (Scheme 3), serine (Scheme 4), and glyceric-acid derivatives (Scheme 5) with quaternary stereogenic centers. The configurations of the products are determined by NOE-NMR measurements and by chemical correlation. These show that the dioxolane-derived enolates A and D are alkylated preferentially from that face of the ring which is already substituted (‘syn’-attack), while the dihydrooxazol-and oxazolidine-derived enolates B and C are alkylated from the opposite face (‘anti’-attack). The ‘syn’-attack is postulated to arise from strong folding of the heterocyclic ring due to electronic repulsion between the enolate π-system and non-bonding electron pairs on the heteroatoms (see Scheme 6).  相似文献   

11.
The preparation of novel electrophilic building blocks for the synthesis of enantiomerically pure compounds (EPC) is described. Thus, the 2-(tert-butyl)dioxolanones, -oxazolidinones, -imidazolidinones, and -dioxanones obtained by acetalization of pivalaldehyde with 2-hydroxy-, 3-hydroxy-, or 2-amino-carboxylic acids are treated with N-bromosuccinimide under typical radical-chain reaction conditions (azoisobuytyronitril/CCl4/reflux). Products of bromination in the α-position of the carbonyl group of the five-membered-ring acetals are isolated or identified ( 2, 5 , and 8 ; Scheme 1). The dioxanones are converted to 2H, 4H-dioxinones under these conditions ( 12 , 14 , 15 , 21 , and 22 ; Schemes 2 and 3). The products can be converted to chiral derivatives of pyruvic acid (methylidene derivatives 3 and 6 ) or of 3-oxo-butanoic and -pentanoic acid ( 16 and 23 ). The mechanism of the brominations is interpreted. The conversion of serine to enactiomcrically pure dioxanones 26–28 (Scheme 4) is also discussed.  相似文献   

12.
Peptide-Bond Formation with C-Terminal α,α-Disubstituted α - Amino Acids via Intermediate Oxazol-5(4H)-ones The formation of peptide bonds between dipeptides 4 containing a C-terminalα,α-disubstituted α-amino acid and ethyl p-aminobenzoate ( 5 ) using DCC as coupling reagent proceeds via 4,4-disubstituted oxazol-5(4H)-ones 7 as intermediates (Scheme 3). The reaction yielding tripeptides 6 (Table 2) is catalyzed efficiently by camphor-10-sulfonic acid (Table 1). The main problem of this coupling reaction is the epimerization of the nonterminal amino acid in 4 via a mechanism shown in Scheme 1. CSA catalysis at 0° suppresses completely this troublesome side reaction. For the coupling of Z-Val-Aib-OH ( 11 ) and Fmoc-Pro-Aib-OH ( 14 ) with H-Gly-OBu1 ( 12 ) and H-Ala-Aib-NMe2 ( 15 ), respectively, the best results have been obtained using DCC in the presence of ZnCl2 (Table 3).  相似文献   

13.
Treatment of 3,3′-alkylidene-4,4′-dihydroxybis[coumarins] 1 with NaBH3CN in refluxing MeOH affords 3-alkyl-4-hydroxycoumarins 2 and 4-hydroxycoumarin ( 3 ; Scheme 1). The reaction might take place via hydride trapping of alkylidenechromandiones C formed from 1 in a retro-Michael reaction. Such a retro-Michael reaction of 1 might be biologically relevant. The presence of C during the reductive fragmentation 1 → 2 is suggested by Diels-Alder and nucleophilic trapping of the alkylidenechromandiones C as well as from cross-over experiments with coumarins other than 3 (see Scheme 2). The reductive fragmentation of 1 allows the chemo- and regioselective synthesis of a variety of 3-alkyl-4-hydroxycoumarins 2 (see Table).  相似文献   

14.
Naturally occurring (?)-(R,R)-α-necrodol ((?)- 1 ) and its C(4)-epimer (?)- 2 are obtained in 84 and 44% yields, respectively, by lithium ethylenediamide (LEDA) treatment of the corresponding β-necrodols (?)- 3 and (?)- 4 (Scheme 1, Table), both readily available from (?)-campholenyl acetate ((?)- i ) by an efficient stereoselective synthesis. The thermodynamically preferred (?)-(R)-γ-necrodol ((?)- 5 ) becomes the major product (≥ 80% yield) after either prolonged treatment with LEDA or exposure of α- and β-necrodols to BF3·Et2O. In an alternative route, (+)- 5 is prepared starting from (+)-campholenal ((+)- ii ) via Pd-catalysed decarbonylation to (?)-(S)-1,4,5,5-tetramethylcyclopent-l-ene ((?)- 6 ) and subsequent application of an acid-catalysed CH2O-addition/rearrangement sequence (Scheme 2).  相似文献   

15.
The smooth reaction of 3‐chloro‐3‐(chlorosulfanyl)‐2,2,4,4‐tetramethylcyclobutanone ( 3 ) with 3,4,5‐trisubstituted 2,3‐dihydro‐1H‐imidazole‐2‐thiones 8 and 2‐thiouracil ( 10 ) in CH2Cl2/Et3N at room temperature yielded the corresponding disulfanes 9 and 11 (Scheme 2), respectively, via a nucleophilic substitution of Cl? of the sulfanyl chloride by the S‐atom of the heterocyclic thione. The analogous reaction of 3‐cyclohexyl‐2,3‐dihydro‐4,5‐diphenyl‐1H‐imidazole‐2‐thione ( 8b ) and 10 with the chlorodisulfanyl derivative 16 led to the corresponding trisulfanes 17 and 18 (Scheme 4), respectively. On the other hand, the reaction of 3 and 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazole‐5(4H)‐thione ( 12 ) in CH2Cl2 gave only 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazol‐5(4H)‐one ( 13 ) and the trithioorthoester derivative 14 , a bis‐disulfane, in low yield (Scheme 3). At ?78°, only bis(1‐chloro‐2,2,4,4‐tetramethyl‐3‐oxocyclobutyl)polysulfanes 15 were formed. Even at ?78°, a 1 : 2 mixture of 12 and 16 in CH2Cl2 reacted to give 13 and the symmetrical pentasulfane 19 in good yield (Scheme 5). The structures of 11, 14, 17 , and 18 have been established by X‐ray crystallography.  相似文献   

16.
The triphenylstannyl β-D -glucopyranoside 4 was synthesized in one step from the 1,2-anhydro-α-D -glucopyranose 3 with (triphenylstannyl)lithium (Scheme 1). Transmetallation of 4 with excess BuLi, followed by quenching the dianion 7 with CD3OD gave (1S)-1,5-anhydro-3,4,6-tri-O-benzyl-[1-2H]-D - glucitol ( 8 ) in 81% yield (Scheme 2). Trapping of 7 with benzaldehyde, isobutyraldehyde, or acroleine gave the expected β-D -configurated products 11, 12 , and 13 in good yields. Preparation of C-acyl glycosides from acid chlorides, such as acetyl or benzoyl chloride was not practicable, but addition of benzonitrile to 7 yielded 84% of the benzoylated product 14 . Treatment of 7 with MeI led to 15 (30%) along with 40% of 18 , C-alkylation being accompanied by halogen-metal exchange. Prior addition of lithium 2-thienylcyanocuprate increased the yield of 15 to 50% and using dimethyl sulfate instead of MeI led to 77% of 15 . No α-D -anomers could be detected, except with allyl bromide as the electrophile, which yielded in a 1:1 mixture of the anomers 16 and 17 .  相似文献   

17.
Solid-liquid phase-transfer glycosylation (KOH, tris[2-(2-methoxyethoxy)ethye]amine ( = TDA-1), MeCN) of pyrrolo[2,3-d]pyrimidines such as 3a and 3b with an equimolar amount of 5-O-[(1,1 -dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-α-D -ribofuranosyl chloride (1) [6] gave the protected β-D -nucleosides 4a and 4b , respectively, stereoselectively (Scheme). The β-D -anomer 2 [6] yielded the corresponding α-D -nucleosides 5a and 5b with traces of the β-D -compounds. The 6-substituted 7-deazapurine nucleosides 6a , 7a , and 8 were converted into tubercidin (10) or its α-D -anomer (11) . Spin-lattice relaxation measurements of anomeric ribonucleosides revealed that T1 values of H? C(8) in the α-D -series are significantly increased compared to H? C(8) in the β-D -series while the opposite is true for T1 of H? C(1′). 15N-NMR data of 6-substituted 7-deazapurine D -ribofuranosides were assigned and compared with those of 2′-deoxy compounds. Furthermore, it was shown that 7-deaza-2′deoxyadenosine ( = 2′-deoxytubercidin; 12 ) is protonated at N(1), whereas the protonation site of 7-deaza-2′-deoxyguanosine ( 20 ) is N(3).  相似文献   

18.
The heterospirocyclic N-methyl-N-phenyl-2H-azirin-3-amines (3-(N-methyl-N-phenylamino)-2H-azirines) 1a - d with a tetrahydro-2H-thiopyran, tetrahydro-2H-thiopyran, and a N-protected piperidine ring, respectively, were synthesized from the corresponding heterocyclic 4-carboxamides 2 by consecutive treatment with lithium diisopropylamide (LDA), diphenyl phosphorochloridate (DPPCI), and sodium azide (Scheme 4). The reaction of these aminoazirines with thiobenzoic acid in CH2Cl2 at room temperature gave the thiocarbamoyl-substituted benzamides 13a - d in high yield. The azirines 1a-d were used as synthons for heterocyclic α-amino acids in the preparation of tripeptides of the type Z-Aib-Xaa-Aib-N(Ph)Me ( 18 ) by following the protocol of the ‘azirine/oxazolone method’: treatment of Z-Aib with 1 to give the dipeptide amide 15 , followed by selective hydrolysis to the corresponding acid 16 and coupling with the 2,2-dimethyl-2H-azirin-3-amine 17 gave 18 , again in high yield (Scheme 5). With some selected examples of 18 , the selective deprotection of the amino and the carboxy group, respectively, was demonstrated (Scheme 6). The solid-state conformations of the protected tripeptides 18a - d , as well as that of the corresponding carbocyclic analogue 18e , were determined by X-ray crystallography (Figs. 1-3 and Tables 1-3). All five tripeptides adopt a β-turn conformation of type III or III′. The solvent dependence of the chemical shifts of the NH resonances (Fig. 6) suggests that there is an intramolecular H-bond between H-N(4) and O(11) in all cases, which is an indication that a relatively rigid β-turn structure also persists in solution. Surprisingly, the tripeptide acid 20a shows no intramolecular H-bond in the crystalline state (Fig. 7); O(11) is involved in an intermolecular H-bond with the OH group of the carboxy function.  相似文献   

19.
(S)‐β2‐Homoamino acids with the side chains of Asp, Glu, Asn, and Gln have been prepared and suitably protected (N‐Fmoc, CO2tBu, CONHTrt) for solid‐phase peptide syntheses. The key steps of the syntheses are: N‐acylation of 5,5‐diphenyl‐4‐isopropyl‐1,3‐oxazolidin‐2‐one (DIOZ) with succinic and glutaric anhydrides (Scheme 2), alkylation of the corresponding Li‐enolates with benzyl iodoacetate and Curtius degradation (Scheme 4), and removal of the chiral auxiliary (Scheme 5). In addition, numerous functional‐group manipulations (CO2H?CO2tBu, CO2Bn?CO2H, CbzNH→FmocNH, CO2H→CO2NH2→CONHTrt; Schemes 2, 4, 5, and 6) were necessary, in order to arrive at the four target structures. The configurational assignments were confirmed by X‐ray crystal‐structure determinations (Scheme 2 and Fig. 3). The enantiomeric purities of a β2hAsn and of a β2hGln derivative were determined by HPLC on a Chiralcel column to be 99.7 : 0.3 and >99 : 1, respectively (Fig. 4). Notably, it took up to twelve steps to prepare a suitably protected trifunctional product with a single stereogenic center (overall yield of 10% from DIOZ and succinic anhydride)!  相似文献   

20.
Synthesis and Behaviour of Isoflavones Substituted in 2′-Position The protected chalcones 6–8 prepared from acetophenone and benzaldehydes rearranged to the dimethoxypropanone derivatives 9–11 in the presence of trimethyl orthoformate by Tl(NO3)3. 3 H2O. These compounds could be cyclized to the isoflavones 12–14 in high yields (Scheme 2). The conversion of these isoflavones to the corresponding isoflavanes (model compounds of the phytoalexin glabridin; see Scheme 1) was the main goal of this work. Hydrogenation of 13 and 14 gave the isoflavanes 15 and 16 , respectively and their deprotection the racemic natural product 4′-O-demethylvestitol ( 17 ). Reduction of 13 and 14 yielded different compounds depending on the reducing agent (Scheme 3). The saturated alcohols 20–23 could be obtained with NaBH4 or LiBH4. They were transferred into the racemic 9-O-demethylmedicarpin ( 24 ) and haginin D ( 25 ) under acidic conditions. The ketones 26–28 (Scheme 4) were obtained in high yields by reduction of 12–14 with DIBAH. Deprotection of 26 yielded the racemic 2,3-dihydrodaidzein ( 29 ). Compounds 13 and 27 as well as 20 and 22 showed different behaviour under reduction conditions with Li in liquid ammonia. An efficient method for the introduction of the MeOCH2O and the MeOCH2CH2OCH2 protecting groups into hydroxylated benzaldehydes and acetophenones (Scheme 5) is described. The appropriate experimental conditions depend on the regioselectivity and on the number of the protected groups. The protected aldehydes, especially those with a protected ortho OH group, show an extraordinary ionization behaviour in chemical-ionization mass spectrometry (isobutane; Scheme 6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号