首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative enhancement of the Raman intensities in the pre-resonance region has been computed for naphthalene, using the vibronic coupling expansion proposed by Albrecht. The relevant vibronic and transition moments have been computed in the CNDO/S approximation, while the normal coordinates of naphthalene have been evaluated using a MINDO/3 program. The experimental pattern of intensities is reproduced in a satisfactory way both for b3g and ag vibrations. The most important states and the main vibronic terms in the expansion are individuated and discussed with respect to the vibronic borrowing present in the Fluorescence spectrum of naphthalene.  相似文献   

2.
Two conformers of protonated pyruvate, CH3C+(OH)COO, with the OH group either trans or cis to the methyl group and the carboxylate group in the C? C? C plane have been studied using the ab initio SCF/3-21G method, as well as by some semiempirical AM1 calculations. Both ab initio SCF and AM1 curves for the potential energy as a function of the C? COO distance exhibit a minimum corresponding to a complex of methylhydroxycarbene, CH3COH, associated with carbon dioxide, but only the AM1 curves predict an inner minimum corresponding to a covalently bonded protonated pyruvate molecule with a C? COO distance of 1.6–1.7 Å. The two models also disagree on the dissociation pathway for pyruvic acid, with the AM1 calculations predicting formation of acetyl and HOCO radicals while the ab initio method predicts dissociation into methylhydroxycarbene and carbon dioxide following an initial intramolecular proton transfer. The weakly bound complexes of methylhydroxycarbene and carbon dioxide have been studied in some detail using ab initio SCF and MP2 methods in conjunction with 6-311G** basis sets, obtaining equilibrium geometries and vibrational frequencies. In addition, the lactone-type isomer of protonated pyruvate, which contains a C? C? O ring, was also studied. The conclusions of these calculations are consistent with those from earlier work using the smaller 3-21G basis set. The most stable complex is predicted to occur between trans-methylhydroxycarbene and carbon dioxide where substantial stabilization is provided by an OH ? OC hydrogen bond. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The MINDO/2 method has been used to generate a complete set of force constants for some simple carbonyl compounds i.e. carbon dioxide, formyl cation, formaldehyde and ketene. Results for carbon monoxide are also recorded. The predicted vibrational frequencies are compared with experiment, and the general usefulness of the method is discussed.  相似文献   

4.
The response of atmospheric pressure chemical ionization (APCI) mass spectrometry to selected polycyclic aromatic compounds (PACs) was examined in a Micromass Quattro atmospheric pressure ion source as a function of both solvents and source gases. Typical PACs found in petroleum samples were represented by mixtures of naphthalene, fluorene, phenanthrene, pyrene, fluoranthene, chrysene, triphenylene, perylene, carbazole, dibenzothiophene, and 9-phenanthrol. A large range of different gases in the APCI source was studied, with emphasis on nitrogen, air, and carbon dioxide. Solvents used included water-acetonitrile, acetonitrile, dichloromethane, and hexanes. The signal responses were dependent on both the gases and solvents used, as was the ionization mechanism, as indicated by the degree of protonation with respect to the level of charge exchange. The combination of carbon dioxide in the nebulizer gas stream with nitrogen in the other streams gave a three- to fourfold better sensitivity than using nitrogen alone for both test mixtures and for complex samples.  相似文献   

5.
The transformation of 2-acetyl-5-substituted-tetrazoles into the corresponding 1,3,4-oxadiazoles was studied with the semiempirical and ab initio methods. Two mechanisms, one with two transition states and the other with three, were elucidated by . The first mechanism supported by PM3 and MNDO has a two-step, almost concerted, mechanism for the elimination of a nitrogen molecule from the tetrazole ring and formation of the oxadiazole product from an open-chain intermediate through carbon C5 and acetyl oxygen bond formation. The second mechanism supported by AM1 and MINDO/3 breaks the elimination of the nitrogen molecule into two steps: first breaking the N4-C5 and then the N2-N3 bonds. Even when the AM1 and MINDO/3 transition state structures were optimized by PM3 and MNDO, the obtained transition states present only one bond breaking. The HF/STO-3G and HF/3-21G ab initio methods agree with the first mechanism where two bonds are breaking almost simultaneously. Despite the disagreement in the mechanism of the nitrogen elimination, the transition state that presents the product formation from open-chain intermediates is quite similar for all methods studied. The semiempirical calculation of this transition state is possible only if it is assumed that it has biradical character. The activation energies calculated by PM3 seem to be insensitive to the nature of the substituents.  相似文献   

6.
A formalism has been developed to treat hydrogen-bonded A—H…?B systems within the CNDO /2 and the MINDO /3 methodologies. In this formalism the interactions are divided into three distinct classes; those between (a) two hydrogen-bonded atoms, (b) one hydrogen-bonded and non-hydrogen-bonded atom, and (c) two non-hydrogen-bonded atoms. The last class of interactions is treated solely by the existing CNDO /2 or MINDO /3 method. For A –H…?B systems, the core resonance integrals are individually parametrized depending upon the class of the interaction. Three types of A—H…?B systems have been thus far parametrized. Nine hydrogen-bonded dimers have been studied using the new formalism and the current CNDO /2 and the MINDO /3 methods. MINDO /3 predicts very large interatomic (AB) distances for the equilibrium geometry, and relatively small stabilization values for the hydrogen-bond energies. CNDO/2 predicts the reverse. The new formalism for both CNDO /2 and MINDO /3 predicts accurate geometries as well as energies for all nine dimers. The new formalisms are called CNDO /2H and MINDO /3H. A general discussion of the nature of hydrogen bonding as exhibited by CNDO /2H and MINDO /3H is presented.  相似文献   

7.
The conditions for synthesizing microtubes with a surface of "house of cards" structure via needlelike particles were examined in detail. Magnesium carbonate trihydrate was formed as a metastable phase in the reaction process using magnesium hydroxide and carbon dioxide as starting materials. Subsequently, in the formation of basic magnesium carbonate from magnesium carbonate trihydrate, microtubes with a surface of house of cards structure were obtained via needlelike particles of magnesium carbonate trihydrate under certain conditions where the temperature and added amount of sodium hydroxide were properly controlled. The pore size of the microtubes could be controlled within a range of 0.5-6 microm by adjusting the condition of needlelike particle formation. In addition, the sustainability of naphthalene release from the microtube was found to be about 6 times higher than that from naphthalene crystal.  相似文献   

8.
The photocatalytic degradation of saturated aqueous solution of naphthalene and anthracene was studied over thin films of porous TiO2 particles on glass substrate, prepared by sol–gel process. Surface morphology and structural features were studied by SEM, TEM and Laser Raman Spectroscopy. These films have been found to be very efficient and the total photomineralisation of these organics to carbon dioxide and water occurs in air-equilibrated solution within 1 h. Concentration changes linearly with the illumination time, and high rate constants are obtained for the degradation of these organics. The pH of the solution changes with the irradiation time due to the formation of intermediate photoproducts, e.g., 5,8-dihydroxynaphthaquinone, and 9,10-anthraquinone, etc. Photodegradation mechanism and the detection of reaction intermediates have been discussed in details.  相似文献   

9.
MINDO/3 calculations have been carried out for a series of branched chain alkanes in order to assess effects of branching on calculated geometries and heats of formation (ΔHf). With vicinal branching, MINDO/3 calculates the central C? C bond to be too long. Bond angles are also found to be distorted. Errors in calculated heats of formation are large when geminal branching is present and significant with vicinal branching. Branching error corrections for ΔHf have been derived and applied to a separate series of branched acyclic and cyclic compounds. For the test sample, application of the branching error corrections gave calculated structures of acyclic branched hydrocarbons with heats of formation having an average absolute error of 1.3 kcal/mole rather than 17.3 kcal/mole before correction. Cyclic branched hydrocarbons are shown to be less well corrected. Calculations of heats of reaction have also been carried out for some isomerization and cyclization reactions using the MINDO/3 and MNDO methods. It is clear from the comparisons that MNDO calculations give less severe errors for highly branched compounds but the errors are still substantial. For prediction of heats of reaction, the error-corrected calculations are shown to be superior to the “raw” calculations obtained by MINDO/3 or MNDO.  相似文献   

10.
采用球型模型和点位-点位模型对超临界二氧化碳的自扩散系数及苯或萘在超临界二氧化碳中的无限稀释扩散系数进行了分子动力学模拟。结果表明,球型模型及点位-点位模型均可较准确地预测二氧化碳的自扩散系数,球型模型因形式简单,准确度相对较差;点位-点位模型准确度虽高,但需较长的模拟机时。两种位能模型所获得的准确度相当,但点位-点位模型可以更精细地反映体系的微观结构。  相似文献   

11.
Aromatic carboxylic acids are obtained in good to excellent yield essentially free of diaryl ketones by carboxylation of aromatics with a carbon dioxide-Al(2)Cl(6)/Al system at moderate temperatures (20-80 degrees C). To optimize reaction conditions and study the reaction mechanism, experimental variables including temperature, amount of Al(2)Cl(6)/Al, various Lewis acids, role of metal additive, carbon dioxide pressure, etc. were studied. The carboxylation reaction was found to be stoichiometric rather than catalytic, with aluminum chloride forming a dichloroaluminate of carboxylic acids. Although the carboxylation takes place using AlCl(3) itself, the presence of metal additives, especially Al, increased the yield and selectivity of carboxylic acids. Because it was not possible to distinguish between two possible mechanistic pathways of the reaction on the basis of the experimental results, theoretical calculations using density functional theory (DFT) were also carried out. One possible pathway involves an initial complex between benzene and Al(2)Cl(6), with subsequent formation of organoaluminum intermediates (PhAlCl(2) and PhAl(2)Cl(5)). The other proceeds through the formation of various complexes of CO(2) with aluminum chloride (AlCl(3))(n), n = 1-4. The calculations have shown that the organometallic pathway, leading eventually through the formation of phenylaluminum dichloride, is endothermic by 33 kcal/mol. In contrast, the preferred CO(2)-AlCl(3) complex forms in an exothermic reaction (-6.0 kcal/mol) as does CO(2)AlCl(2)(+). On the basis of both experimental and calculational findings, the most feasible reaction mechanism proposed involves superelectrophilic aluminum chloride activated carbon dioxide reacting with the aromatics in a typical electrophilic substitution.  相似文献   

12.
Allylsilanes show in certain cases a behaviour towards electrophiles which is opposite to that of its carbon homologues. Theoretical calculations using Dewar's MINDO/3 method performed on 3-methyl 3-butenyl trimethylsilane and 2-methyl 2-butene show that geometrical optimization leads to a silicon-allylic carbon bond nearly parallel to the double bond π cloud, and both net atomic charges and HOMO coefficients indicate an inversion between these two substrates.  相似文献   

13.
The effect on the stability of the isomers of aminosalicylic acid of formation of their sodium salts has been studied by use of differential scanning calorimetry and thermogravimetry, coupled with evolved gas analysis by Fourier transform infrared spectroscopy. X-ray powder diffraction and infrared spectroscopy provided complementary information. The DSC curves for the sodium salts of all of the isomers showed complex dehydration/decomposition endotherms. From the initial mass losses of the TG curves, the amounts of water per mole of salt were estimated as 0.5, 2.4 and 1.4 moles for the sodium salts of 3-aminosalicylic acid, 4-aminosalicylic acid and 5-aminosalicylic acid, respectively. TG-FTIR results for the sodium salt of 3-aminosalicylic acid showed the evolution of carbon dioxide in three stages: below 150°C, between 200 and 300°C and continuous formation up to 500°C. This behaviour differs from that of 3-aminosalicylic acid itself, which forms CO2 between 225 and 290°C. For the sodium salt of 4-aminosalicylic acid, the formation of carbon dioxide starts from 250°C and is still being formed at about 650°C. 4-aminosalicylic acid decarboxylates above 150°C. 5-aminosalicylic acid and its sodium salt showed no evolution of carbon dioxide below 600°C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The insertion of carbon dioxide into metal element σ-bonds is an important elementary step in many catalytic reactions for carbon dioxide valorization. Here, the insertion of carbon dioxide into a family of group 10 alkyl complexes of the type (RPBP)M(CH3) (RPBP = B(NCH2PR2)2C6H4; R = Cy or tBu; M = Ni or Pd) to generate κ1-acetate complexes of the form (RPBP)M{OC(O)CH3} is investigated. This involved the preparation and characterization of a number of new complexes supported by the unusual RPBP ligand, which features a central boryl donor that exerts a strong trans-influence, and the identification of a new decomposition pathway that results in C–B bond formation. In contrast to other group 10 methyl complexes supported by pincer ligands, carbon dioxide insertion into (RPBP)M(CH3) is facile and occurs at room temperature because of the high trans-influence of the boryl donor. Given the mild conditions for carbon dioxide insertion, we perform a rare kinetic study on carbon dioxide insertion into a late-transition metal alkyl species using (tBuPBP)Pd(CH3). These studies demonstrate that the Dimroth–Reichardt parameter for a solvent correlates with the rate of carbon dioxide insertion and that Lewis acids do not promote insertion. DFT calculations indicate that insertion into (tBuPBP)M(CH3) (M = Ni or Pd) proceeds via an SE2 mechanism and we compare the reaction pathway for carbon dioxide insertion into group 10 methyl complexes with insertion into group 10 hydrides. Overall, this work provides fundamental insight that will be valuable for the development of improved and new catalysts for carbon dioxide utilization.

The kinetics of carbon dioxide insertion into a pincer-supported palladium methyl complex are studied. The complex inserts carbon dioxide at room temperature, and we explore both solvent and Lewis acid effects on carbon dioxide insertion.  相似文献   

15.
《Fluid Phase Equilibria》1999,166(1):101-110
An equation proposed by Darken, including the thermodynamic factor and tracer diffusion coefficients of solvent and solute, was adopted to correlate the diffusion coefficients for naphthalene and dimethylnaphthalene (DMN) isomers in supercritical carbon dioxide and the correlated results were compared with the experimental data. IML equation of state with mixing rules and combining rules containing two adjustable interaction parameters were used for calculation of the thermodynamic factor. By using the interaction parameters adjusted to the solubility data, the concentration dependence of diffusion coefficients and their anomaly near the critical point of carbon dioxide can be quantitatively represented. In order to improve the reliability of experimental results, some re-measured diffusion coefficient data for naphthalene, 2,6- and 2,7-DMN at 308.2 K, and new data for naphthalene at 318.2 K and for 2,3-DMN at 308.2 K are presented.  相似文献   

16.
Calculations of 13C chemical shifts in some simple hydrocarbons have been carried out using the GIAO approach in the MINDO/3 semiempirical formalism. In order to achieve reasonable agreement with experiment it is necessary to modify (increase) the vacant orbital energies in the MINDO/3 calculation in order to reduce the magnitude of the paramagnetic contribution, and to also modify this dominant term by generally reducing it as a function of the number of hydrogen and carbon atoms bonded to the resonant nucleus in question. For a set of 34 resonant nuclei of the simpler hydrocarbons, agreement with experiment of the order of 7.8 ppm is attained; however, pathological cases such as cyclopropane and some simple allenes continue to cause problems, increasing the standard deviation of the full set to 12.5 ppm. Our results indicate that the MINDO/3 approach is as viable for 13C chemical shift calculations as other semiempirical approaches, all of which seem currently to be limited to a standard deviation of the order of 10 ppm.  相似文献   

17.
The inclusion process of naphthalene into heptakis-(2,6-di-O-methyl)--cyclodextrin (DMCD) during the sealed heating was investigated by using solid state time,resolved fluorescent analysis. Fluorescence lifetimes of naphthalene in naphthalene crystals and in inclusion complex with DMCD prepared by coprecipitation were determined 59 ns and 88 ns, respectively. Fluorescence lifetime of naphthalene monomer becomes longer after inclusion complex formation. Fluorescence lifetimes of naphthalene monomer and excimer in the sealed heating complex were determined about 80 ns and 100 ns, respectively. By setting the observing wavelength of time resolved fluorescent analysis at 355 nm, the formation and the decay of the excimer state of naphthalene during the sealed heating process were successfully confirmed.  相似文献   

18.
The diffusion, solubility, and permeability behavior of oxygen and carbon dioxide were studied in amorphous and semicrystalline syndiotactic polystyrene (s‐PS). The crystallinity was induced in s‐PS by crystallization from the melt and cold crystallization. Crystalline s‐PS exhibited very different gas permeation behavior depending on the crystallization conditions. The behavior was attributed to the formation of different isomorphic crystalline forms in the solid‐state structure of this polymer. The β crystalline form was virtually impermeable for the transport of oxygen and carbon dioxide. In contrast, the α crystalline form was highly permeable for the transport of oxygen and carbon dioxide. High gas permeability of the α crystals was attributed to the loose crystalline structure of this crystalline form containing nanochannels oriented parallel to the polymer chain direction. A model describing the diffusion and permeability of gas molecules in the composite permeation medium, consisting of the amorphous matrix and the dispersed crystalline phase with nanochannels, was proposed. Cold crystallization of s‐PS led to the formation of a complex ordered phase and resulted in complex permeation behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2519–2538, 2001  相似文献   

19.
The usefulness of liquid carbon dioxide as a solvent for polymerization of ethylene was studied. The effect of liquid carbon dioxide on the polymerization was investigated under conditions of the pressure of 400 kg./cm.2 over the temperature range 20–45°C. by using γ-radiation and AIBN as initiators. The infrared spectrum of the polymers showed that carbon dioxide had little effect on the polymer structure. The polymers contained no combined carbon dioxide and only small amounts of vinylidene unsaturation. The methyl content of the polymers was 0.5–4.0 CH3/1000C. The polymer yield and molecular weight were found to be decreased by the addition of carbon dioxide in both polymerization by γ-radiation and AIBN. The number of polymer molecules formed per unit time increased with the content of carbon dioxide in the γ-ray polymerization, and was constant in the case of AIBN. The advantages of the use of liquid carbon dioxide as a solvent in this polymerization were also considered from the viewpoints of the continuous process, the separation of polymer, the stability of carbon dioxide to radiation, and commercial applications.  相似文献   

20.
The thermodynamic equilibrium in the carbon dioxide conversion of methane is studied by Gibbs energy minimization. The curves that represent the dependences of the degree of coke formation, the content of methane and carbon dioxide in syngas, and the syngas module on the CO2/CH4 mole ratio in the initial mixture and on temperature at various pressures, are plotted. The regions in which the CO2/CH4 mole ratio is optimal for carbon dioxide conversion and no coke formation occurs, and which are characterized by a minimal content of methane and carbon dioxide in syngas, are revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号