首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The dynamic behaviour of twelve polysubstituted derivatives of [Ir4(CO)12] has been investigated in solution, using 2D-EXSY, and VT-31P- and 13C-NMR. [Ir4(CO)62-CO)34-diarsine) PPh3] and [Ir4(CO)62-CO)34-nor-bornadiene)(PMePh2)] exhibit two isomeric forms in solution, which interconvert through an intramolecular change of basal face. The related cluster [Ir4(CO)62-CO)34-norbornadiene)PPh3] exists as a single isomer in solution. It displays rotation of CO ligands about the apical Ir-atom, followed by two consecutive changes of basal face. The tetrasubstituted clusters with two chelating ligands [Ir4(CO)52-CO)34-diolefin)2] also exhibit rotation of apical CO's, the activation energy increases with greater steric hindrance of the radical ligands. A quantitative analysis of the 31P- and 13C-2D-EXSY spectra followed by simulation of the corresponding VT-NMR spectra of [IR4(CO)52-CO)32-L)2] (L = bis(diphenylphosphino)methane and 1,3-bis(diphenylphosphino)propane) revealed a pairwise averaging of the P-atoms, caused by two parallel changes of basal face averaging all CO ligands. In addition, the restricted rotation of ligands about the apical Ir-atom was identified at higher temperatures. The remaining clusters are either rigid on the NMR time scale, or display CO-scrambling about a single Ir-atom.  相似文献   

2.
The synthesis of [Ir2Rh2(CO)12] ( 1 ) by the literature method gives a mixture 1 /[IrRh3(CO)12] which cannot be separated using chromatography. The reaction of [Ir(CO)4]? with 1 mol-equiv. of [Rh(CO)2(THF)2]+ in THF gives pure 1 in 61% yield. Crystals of 1 are highly disordered, unlike those of its derivative [Ir2Rh2(CO)52-CO)3(norbornadiene)2] which were analysed using X-ray diffraction. The ground-state geometry of 1 in solution has three edge-bridging CO's on the basal IrRh2 face of the metal tetrahedron. Time averaging of CO's takes place above 230 K. The CO site exchange of lowest activation energy is due to one synchronous change of basal face, as shown by 2D- and VT-13C-NMR. Substitution of CO by X? in 1 takes place at a Rh-atom giving [Ir2Rh2(CO)82-CO)3X]? (X = Br, I). Substitution by bidentate ligands gives [Ir2Rh2(CO)72-CO)34-L)] (L = norbornadiene, cycloocta-1,5-diene) where the ligand L is chelating a Rh-atom of the basal IrRh2 face. Carbonyl substitution by tridentate ligands gives [Ir2Rh2(CO)62-CO)33-L)] (L = 1,3,5-trithiane, tripod) with L capping the triangular basal face of the metal tetrahedron. Carbonyl scrambling is also observed in these substituted derivatives of 1 and is mainly due to the rotation of three terminal CO's about a local C3 axis on the apical Ir-atom.  相似文献   

3.
The iridium and rhodium complexes [MCl(CO)2(NH2C6H4Me-4)] (M = Ir or Rh) react with [Os3(μ-H)2(CO)10] to give the tetranuclear clusters [MOs3(μ-H)2(μ-Cl)(CO)12]; the iridium compound being structurally identified by X-ray diffraction. Similarly, [IrCl(CO)2(NH2C6H4Me-4)] and [Rh2(μ-CO)2(η-C5Me5)2] afford the tetranuclear cluster [Ir2Rh2(μ-CO)(μ3-CO)2(CO)4(η-C5Me5)2], also characterised by single-crystal X-ray crystallog  相似文献   

4.
The reaction of [Ir2Rh2(CO)12] with 1 mol-equiv. of PPh3 yields [Ir2Rh2(CO)11PPh3] ( 1 ) as a mixture of two isomers with the phosphine ligand axially bound either to one basal Rh-atom in the kinetically preferred isomer 1 R or to one basal Ir-atom in the thermodynamically preferred isomer 11 . Both isomers are fluxional on the 13C-NMR time scale at low temperature due to CO scrambling. Around room temperature, a new type of fluxional process starts to operate which is responsible for the isomerisation 1R?11 , i.e. the intramolecular migration of the reputedly inert PPh3 ligand from one metal centre to another. The activation volumes of conversions 1R → 11 and 11 → 1R are both positive, indicating that the migration of PPh3 is dissociative in character. This article reports the first application of variable pressure 31P-NMR to mechanistic studies.  相似文献   

5.
The fluxionality of [Ir4(CO)82-CO)3L] (L = Br?, I?, SCN?, NO2?, P(4-ClC6H4)3, PPh3, P(4-MeOC6H4)3, P(4-Me2NC6H4)3), as studied by 2D-13C-NMR in solution, is due to two successive scrambling processes: the merry-go-round of six basal CO's and CO bridging to alternative faces of the Ir4 tetrahedron. The basicity of the ligand L has no significant effect on the activation parameters. The scrambling process of lowest activation energy in [Ir4(CO)72-CO)3(PMePh2)2] correspond to the two possible synchronous CO bridging about a unique face of the metal tetrahedron swapping the relative axial and radial positions of the ligands L. The disubstituted clusters [Ir4(CO)102-L? L)] with one edge-bridging ligand have a ground-state geometry with three edge-bridging CO's (L? L = bis(diphenylphosphino)methane, bis(diphenylarsino)methane, bis(diphenylphosphino)propane) or with all terminal CO's (L? L = CH3SCH2SCH3). In all cases, the fluxional process of lowest activation energy in the merry-go-round of six CO's about a unique triangular face. For the P and As donor ligands, this process is followed by the rotation of terminal CO's bonded to two Ir-atoms residing on the mirror plane of the unbridged intermediate.  相似文献   

6.
Summary The rhodium(I) carbonyl compounds [Rh(CO)L22] [BF4]. 1/2CH2Clnn2 (L = PPh2 or AsPh3) react with the nucleophiles OMe, RCOO (R = Me, Et) under nitrogen to form [Rh(OR)(CO)L2] (1)–(2) and [Rh(OOCR)(CO)L2] (7)–(10), respectively. Addition of [Rh(CO)2(PPh3)2]-[BF 4] to OMe under nitrogen produces [Rh(COOMe)-(CO) (PPh3)2]-MeOH (3), whilst reactions of [Rh(CO)-(PPh3)2] [BF4]·1/2CH2Cl2 and [Rh(CO)2(PPh3)2] [BF4] with OR- (R = Me, Et or n-Pr) in the presence of CO produce [Rh(COOR)(CO)2(PPh3)2] (4)–(6). The products have been characterised by i.r., 1H, 31P, 13Cn.m.r. spectroscopy and elemental analysis.  相似文献   

7.
Summary The use of [RhCl(CO)(PPh3)]2 as a precursor for the synthesis of complexes of the types [Rh(CO)L2(PPh3)]A (A = [ClO4] or [BPh4]; L = pyridine type ligand) and [Rh(CO)(L-L)(PPh3)]A (A = [ClO4] or [BPh4]; L-L = bidentate nitrogen donor) and the preparation of several complexes of the types [Rh(CO)L(PPh3){P(p-RC6H4)3}]BPh4 and [Rh(CO)(phen)(PPh3){P(p-RC6H4)3}]A (A = [ClO4] or [BPh4]; R = H or Me) is described.Author to whom all correspondence should be directed.  相似文献   

8.
Treatment of [Ru2(CO)(μ-CO) {μ-C(O)C2Ph2} (η-C 5H5)2] with allene in toluene at 100°C displaces diphenylacetylene and produces [Ru(CO)(η-C5H5)-{η3-C3H4Ru(CO)2(η-C5H5)}]; upon protonation a 1-methylvinyl cation [Ru2(CO)2(μ-CO){μ-C(Me)CH2}(η-C5H5)2]+ is formed which undergoes nucleophillic attack by hydride to yield the μ-dimethylcarbene complex [Ru2(CO)2-(μ-CO)(μ-CMe2)(η-C5H5)2].  相似文献   

9.
The reactivity of [Pt2(μ-S)2(PPh3)4] towards [RuCl26-arene)]2 (arene=C6H6, C6Me6, p-MeC6H4Pri=p-cymene), [OsCl26-p-cymene)]2 and [MCl25-C5Me5)]2 (M=Rh, Ir) have been probed using electrospray ionisation mass spectrometry. In all cases, dicationic products of the type [Pt2(μ-S)2(PPh3)4ML]2+ (L=π-hydrocarbon ligand) are observed, and a number of complexes have been prepared on the synthetic scale, isolated as their BPh4 or PF6 salts, and fully characterised. A single-crystal X-ray structure determination on the Ru p-cymene derivative confirms the presence of a pseudo-five-coordinate Ru centre. This resists addition of small donor ligands such as CO and pyridine. The reaction of [Pt2(μ-S)2(PPh3)4] with RuClCp(PPh3)2 (Cp=η5-C5H5) gives [Pt2(μ-S)2(PPh3)4RuCp]+. In addition, the reaction of [Pt2(μ-S)2(PPh3)4] with the related carbonyl complex [RuCl2(CO)3]2, monitored by electrospray mass spectrometry, gives [Pt2(μ-S)2(PPh3)4Ru(CO)3Cl]+.  相似文献   

10.
The reactions of NEt4 [Ir4(CO)11 Br] (I) with mono- and di-olefins in the presence of AgBF4 gave high yields ( > 90%) of Ir4(CO)11 (olefin) (II) and Ir4(CO)104-diolefin) (III). Oxidation of Ir4(CO)11 (L = PPh3, AsPh3) in the presence of an excess of diolefin by 1 eq. ON(CH3)3 gave the clusters Ir4(CO)9L(η4-diolefin) (IV) and Ir4(CO)7L(η4-diolefin)2 (V). Sulphur dioxide quantitatively displaces the monoolefin ligand from II to give Ir4(CO)92-CO)22-SO2), which is the first example of a tetrairidium- SO2 cluster.  相似文献   

11.
Reaction of [MoCo(CO)5(PPh3)25-C5H5)] (1) with diphenylacetylene in tetrahydrofuran at 50 °C yielded two heterobimetallic compounds, [MoCo(CO)4.(PPh3){μ-PhC ? CPh}(η5-C5H5)] (4) and [MoCo(CO)5{μ-PhC ? CPh} (η5-C5H5)] (5). However, an unexpected product, Co(CO)2(μ-CO)(μ:η24-C4Ph4)Co(CO)2(PPh3) (6), was observed while attempting to grow the crystals for structural determination of 4. The X-ray crystal structure of 6 was determined: triclinic, $ {\rm P}\bar 1 $, a = 11.654(2) Å, b = 12.864(2) Å, c = 13.854(2) Å, α = 89.67(2)°, β = 86.00(2)°, γ= 83.33(2)°, V = 2057.9(6) Å3 Z=2. In 6, two cobalt fragments are at apical and basal positions of the pseudo-pentagonal pyramidal structure, respectively. The electron count for the apical cobalt fragments is 20, which is rather unusual. It is believed that 6 was formed after the fragmentation and recombination of the fragmented species of 4.  相似文献   

12.
Summary Trans-[RhCl(CO)L2] (L = PPh3, AsPh3 or PCy3) react with AgBF4 in CH2Cl2 to give the novel species [Rh-(CO)L2]+ [BF4].nCH2Cl2 (n = 1/2 or 1 1/2) (1–3), which we believe to be stabilised by weak solvent interaction. The corresponding stibine compound cannot be isolated by the same process, instead [Rh(CO)2(SbPh3)3]+ [BF4] (7) is formed when the reaction is carried out in the presence of CO. When reactions designed to prepare [Rh(CO)L2]+ [BF4] are performed in the presence of CO, or [Rh(CO)L2]+ [BF4] complexes are reacted with CO, [Rh(CO)2L2]+ [BF4] (L = PPh3, AsPh3 or PCy3) (4–6) are formed. If Me2CO is used as solvent in the preparation of [Rh(CO)L2]+ [BF4] (L = PPh3 or AsPh3), then the products are the four-coordinate [Rh(CO)L2-(Me2CO)]+ [BF4] (8,9) species. The complexes have been characterised by i.r., 31P and 1H n.m.r. spectroscopy and elemental analyses.  相似文献   

13.
The two complexes [Ir4(CO)10(diarsine)] (1) and [Ir4(CO)10(1,5-cyclooctadiene)] (2) bear a bidentate ligand chelating one metal atom of the basal face of the Ir4 tetrahedron. However, they differ in fluxional behaviour as observed by 2D-exchange and variable-temperature 13C-NMR. The CO-site exchange with lowest activation energy proceeds via an unbridged intermediate in 2 , whereas that in 1 occurs via a concerted edge-bridging of CO's to an alternative face of the metal core. This difference is apparently related to different ground-state geometries: the basal CO's are symmetrically bridging in 2 , whereas two CO's are semi-bridging in 1 . The molecular structure of 2 was determined by single crystal X-ray diffractometry. The crystals are orthorhombic, space group Pbca, a = 11.651(4), b = 13.118(3), c = 28.64(1)Å. The idealized molecular symmetry is Cs. The diolefin chelates a basal Ir-atom replacing an axial and a radial CO group on the tetrahedral metal-atom framework.  相似文献   

14.
Carbonylrhodium complexes formed during hydroformylation of CH2O from various rhodium precursors were investigated byin situ IR spectroscopy. It was found that under the conditions of the hydroformylation of CH2O inN,N-dimethylacetamide (DMAA), RhH(CO)(PPh3)3, RhCl(CO)(PPh3)2, RhCl(PPh3)3, RhCl(CO)(PBu3)2, and [RhCl(CO)2]2 form complex systems that necessarily contain anionic complexes, [Rh(CO)2Lx(DMAA)y] (L = PPh3, PBu3,x = 1 to 2,y = 1 to 0; [Rh(CO)4]). The participation of ionic structures in the hydroformylation of CH2O, most likely, in the step of the activation of CH2O, was proven by kinetic techniques.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1066–1069, June, 1995.  相似文献   

15.
Summary Diphenyl(2-pyridyl)phosphine (PPh2pyl), phenylbis(2-pyridyl)-phosphine (PPhpyl2) and tris(2-pyridyl)-phosphine (Ppyl3) react with [Rh(acac)(CO)2] (acac=acetylacetonate) and Rh(8-oxy)(CO)2(8-oxy=8-hydroxyquinolinate) yielding [Rh(chel)(CO)(PPhxpyl3–x)]. The properties of these complexes were examined by spectral (i.r.,u.v.-vis,31P n.m.r.) and chemical methods.  相似文献   

16.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The reaction of the dilithium salt Li2[Me2Si(C5H4)(C5Me4)] (2) of Me2Si(C5H5)(C5HMe4) (1) with [MCl(C8H12)]2 (M=Rh, Ir) and [RhCl(CO)2]2 afforded homodinuclear metal complexes [{Me2Si(η5-C5H4)(η5-C5Me4)}{M(C8H12)}2] (M=Rh: 3; M=Ir: 4) and [{Me2Si(η5-C5H4)(η5-C5Me4)}Rh2(CO)2(μ-CO)] (5), respectively. The reaction of 2 with RhCl(CO)(PPh3)2 afforded a mononuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}Rh(CO)PPh3] (6) leaving the C5HMe4 moiety intact. Taking advantage of the difference in reactivity of the two cyclopentadienyl moieties of 2, heterodinuclear complexes were prepared in one pot. Thus, the reaction of 2 with RhCl(CO)(PPh3)2, followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded a homodinuclear metal complex [Rh(CO)PPh3{(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (7) consisting of two rhodium centers with different ligands and a heterodinuclear metal complex [Rh(CO)(PPh3){(η5-C5H4)SiMe25-C5Me4)}Ir(C8H12)] (8). The successive treatment of 2 with [IrCl(C8H12)]2 and [RhCl(C8H12)]2 provided heterodinuclear metal complex [Ir(C8H12){(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (9). The reaction of 2 with CoCl(PPh3)3 and then with PhCCPh gave a mononuclear cobaltacyclopentadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(CPhCPhCPhCPh)(PPh3)] (10). However, successive treatment of 2 with CoCl(PPh3)3, PhCCPh and [MCl(C8H12)]2 in this order afforded heterodinuclear metal complexes [M(C8H12){(η5-C5H4)SiMe25-C5Me4)}Co(η4-C4Ph4)] (M=Rh: 11; M=Ir: 12) in which the cobalt center was connected to the C5Me4 moiety. Although the heating of 10 afforded a tetraphenylcyclobutadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(η4-C4Ph4)] (13), in which the cobalt center was connected to the C5H4 moiety, simple heating of the reaction mixture of 2, CoCl(PPh3)3 and PhCCPh resulted in the formation of a tetraphenylcyclobutadiene complex [{Me2Si(C5H5)(η5-C5Me4)}Co(η4-C4Ph4)] (14), in which the cobalt center was connected to the C5Me4 moiety. The mechanism of the cobalt transfer was suggested based on the electrophilicity of the formal trivalent cobaltacyclopentadiene moiety. In the presence of 1,5-cyclooctadiene, the reaction of 2 with CoCl(PPh3)3 provided a mononuclear cobalt cyclooctadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(C8H12)] (15). The reaction of 15 with n-BuLi followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded the heterodinuclear metal complexes of [Co(C8H12){(η5-C5H4)SiMe25-C5Me4)}M(C8H12)] (M=Rh: 16; M=Ir: 17). Treatment of 6 with Fe2(CO)9 at room temperature afforded a heterodinuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}{Rh(PPh3)(μ-CO)2Fe(CO)3}] (18) in which the C5HMe4 moiety was kept intact. Treatment of dinuclear metal complex 5 with Fe2(CO)9 afforded a heterotrinuclear metal complex [{(η5-C5H4)SiMe25-C5Me4)}{Rh(CO)Rh(μ-CO)2Fe(CO)3}] (19) having a triangular metal framework. The crystal and molecular structures of 3, 11, 12, 18 and 19 have been determined by single-crystal X-ray diffraction analysis.  相似文献   

18.
Summary The reaction of previously reported RhI and IrI cationic complexes towards carbon monoxide and triphenylphosphine has been studied. Carbonyl rhodium(I) mixed complexes of the formulae [Rh(CO)L2(PPh3)]ClO4, (L=tetrahydrothiophene(tht), trimethylene sulfide(tms), SMe2, or SEt2), [(CO)(PPh3)Rh{-(L-L)}2Rh(PPh3)(CO)](ClO4)2 (L-L= 2,2,7,7-tetramethyl-3,6-dithiaoctane (tmdto), (MeS)2(CH2)3 (dth), or 1,4-dithiacyclohexane (dt), [Rh(CO)L(PPh3)2]ClO4 (L= tht, tms, SMe2, or SEt2), and carbonyl iridium(I) complexes of the formulae [Ir(CO)2(COD)(PPh3)]ClO4, [Ir(CO)(COD)(PPh3)2]ClO4, [(CO)(COD)(PPh3) Ir{-(L-L)} Ir(PPh3)(COD)(CO)](ClO4)2 (L-L = tmdto or dt), [(CO)2 (PPh3)Ir(-tmdto)Ir(PPh3)(CO)2](ClO4)2, [(CO)2(PPh3) Ir(-dt)2Ir(PPh3)(CO)2](ClO4)2, were prepared by different synthetic methods.  相似文献   

19.
The reaction of the organometallic diarsene complex [Cp2Mo2(CO)42-As2)] ( 1 ) with Ag[Al{OC(CF3)3}4] (Ag[TEF]) yielded the AgI monomer [Ag(η2- 1 )3][TEF] ( 2 ). This compound exhibits dynamic behavior in solution, which allows directed selective synthesis of unprecedented organometallic–organic hybrid assemblies upon its reaction with N-donor organic molecules by a stepwise pathway, which is supported by DFT calculations. Accordingly, the reaction of 2 with 2,2′-bipyrimidine ( L1 ) yielded the dicationic molecular compound [{(η2- 1 )2Ag}2(μ- L1 )][TEF]2 ( 3 ) or the 1D polymer [{(η2- 1 )Ag}(μ- L1 )]n[TEF]n ( 4 ) depending on the ratio of the reactants. However, its reactions with the pyridine-based linkers 4,4′-bipyridine ( L2 ), 1,2-bis(4-pyridyl)ethylene ( L3 ) and 1,2-bis(4-pyridyl)ethyne ( L4 ) allowed the formation of the 2D polymers [{(η2- 1 )Ag}2(μ- Lx )3]n[TEF]2n [ Lx=L2 ( 5 ), L3 ( 6 ), L4 ( 7 ), respectively]. Additionally, this concept was extended to step-by-step one-pot reactions of 1 , [Ag(CH3CN)3][Al{OC(CF3)2(CCl3)}4] ([Ag(CH3CN)3][TEFCl]) and linkers L2 – L4 to produce the 2D polymers [{(η2- 1 )Ag}2(μ, Lx )3]n[TEFCl]2n [ Lx = L2 ( 8 ), L3 ( 9 ), L4 ( 10 ), respectively].  相似文献   

20.
Reactions of [K(18‐crown‐6)]2[Pb2Se3] and [K([2.2.2]crypt)]2[Pb2Se3] with [Rh(PPh3)3Cl] in en (ethane‐1,2‐diamine) afforded ionic compounds with [Rh3(PPh3)63‐Se)2]? and [Rh3(CN)2(PPh3)43‐Se)2(μ‐PbSe)]3? anions, respectively. The latter contains a PbSe ligand, a rather uncommon homologue of CO that acts as a μ‐bridge between two Rh atoms. Quantum chemical calculations yield a significantly higher bond energy for PbSe than for CO, since the size of the ligand orbitals better matches the comparably rigid Rh‐Se‐Rh angles and the resulting Rh???Rh distance. To rationalize the bent coordination of the ligand, orbitals with significant ligand contributions and their dependence on the bonding angle were investigated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号