首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The bicyclic and tricyclic meso-N-(methylsulfonyl)dicarboximides 1a–f are converted enantioselectively to isopropyl [(sulfonamido)carbonyl]-carboxylates 2a–f by diisopropoxytitanium TADDOLate (75–92% yield; see Scheme 3). The enantiomer ratios of the products are between 86:14 and 97:3, and recrystallization from CH2Cl2/hexane leads to enantiomerically pure sulfonamido esters 2 (Scheme 3). The enantioselectivity shows a linear relationship with the enantiomer excess of the TADDOL employed (Fig.3). Reduction of the ester and carboxamide groups (LiAlH4) and additional reductive cleavage of the sulfonamido group (Red-Al) in the products 2 of imide-ring opening gives hydroxy-sulfonamides 3 and amino alcohols 4 , respectively (Scheme 4). The absolute configuration of the sulfonamido esters 2 is determined by chemical correlation (with 2a,b ; Scheme 6), by the X-ray analysis of the camphanate of 3e (Fig. 1), and by comparative 19F-NMR analysis of the Mosher esters of the hydroxy-sulfonamides 3 (Table 1). A general proposal for the assignment of the absolute configuration of primary alcohols and amines of Formula HXCH2CHR1R2, X = O, NH, is suggested (see 11 in Table 1). It follows from the assignment of configuration of 2 that the Re carbonyl group of the original imide 1 is converted to an isopropyl ester group. This result is compatible with a rule previously put forward for the stereochemical course of reactions involving titanium TADDOLate activated chelating electrophiles ( 12 in Scheme 7). A tentative mechanistic model is proposed ( 13 and 14 in Scheme 7).  相似文献   

2.
A new method was developed for the synthesis of some 7-substituted 3-chloro-3,4-dihydro-l-hydroxycarbostyrils 3c-g in which α-chloro-β-(4-substituted-2-nitrophenyl)propionic acids 2c-g were reductively cyclized by catalytic hydrogenation over platinum-on-carbon sulfided catalyst. In particular, this method was applied to α-chloro-β-(2-nitrophenyl)propionic acids bearing 4-methyl 2c , 4-ethyl 2d , 4-ethoxy 2e , 4-(n-butyl 2f and 4-phenyl 2g substituents to afford good yields of the corresponding 7-methyl 3c , 7-ethyl 3d , 7-ethoxy 3e , 7-(n-butyl) 3f , and 7-phenyl 3g substituted 3-chloro-3,4-dihydro-l-hydroxycarbostyrils. The various 4-substituted α-chloro-β-(2-nitrophenyl)propionic acids 2c-q were synthesized by reacting the in situ diazotized salts of the appropriate 4-substituted-2-nitroanilines in aqueous acetone with acrylic acid in the presence of cuprous chloride and hydrochloric acid. All compounds prepared in this study were characterized by microanalytical and ir and nmr spectral data.  相似文献   

3.
Succesive treatment of chiral esters 1 with LiN(i-Pr)2/Me3SiCl and di(tert-butyl) azodicarboxylate/TiCl4/Ti(i-PrO)4 gave N,N′ -di[(tert-butoxy)carbonyl]hydrazino esters 9 which on deacylation, hydrogenolysis, transesterification, and acidic hydrolysis furnished (2S)-α-amino acids 6 in high enantiomeric purity with efficient recovery of the auxiliary alcohol 7 .  相似文献   

4.
The chiral N-(2-benzoylethyl)-N-tosylglycine esters 5a–h and the α-amino-γ-keto ester 6 were prepared from γ-(tosylamino) alcohols 7a–h . Irradiation of compounds 5a–c, e gave cis-3-hydroxyproline esters 20–23 (Scheme 6), partly with complete asymmetric induction by the C(1′)-substituent, whereas 6 gave enantiomerically pure 4-hydroxy-4-phenyl-L -proline esters 24 in good yield but low de (Scheme 6). The de of the photocyclization depended on the nature and/or size of the C(1′)-substituents. Irradiation of ketones 5d and 5f , bearing H-atoms at C(γ) with respect to the keto function, gave cyclobutanols (Scheme 9) in low yields besides the preferred Norrish-type-II cleavage product. Cyclopentanol 25 was a by-product of the photocyclization of 5c as a result of H? C(δ) abstraction from the t-Bu group. The structure of products 20, 22 , and 24a, b was established by NMR or X-ray analyses.  相似文献   

5.
The reaction between (Z)-1-alkenyllithium and (E)-β-(N, N-dialkylamino)-α, β-alkenals, (E)-β-(N, N-dialkylamino)-α, β-alkenones or (E)-β-(N, N-dialkylamino)-α, β-alkenoic esters yields mainly (E, Z)-α, β-γ, δ-diunsaturated aldehydes, ketones, or esters and is therefore highly stereospecific.  相似文献   

6.
The course of the catalytic hydrogenation and isomerization (H2/Raney-Ni/dioxane or H2/Pd/C/EtOH) of Δ5.7-, Δ7-, Δ8-, and Δ8(14)-steroid olefins was shown to depend strongly on the configuration at C(13). The known hydrogenation/isomerization of reactions of Δ5.7-dienes in the 13β-series to Δ7-(H2/Raney-Ni/dioxane) and Δ8(14)-olefins (H2/Pd/C/EtOH) were also confirmed in the 3β, 19-epoxy-13β- and 3-Oxo-19-acetoxy-13β-steroid series (e.g. 32 → 35 → 37 , Scheme 3). On the other hand, in the corresponding 13α-steroid series the same reactions afforded the Δ7-. and the Δ8-olefins (mixture of products with H2/Raney-Ni/dioxane; quantitatively the Δ8-compounds with H2/Pd/C/EtOH; s. e.g. Scheme 3). A similar dependence on the C(13) configuration was observed in the allylic oxidation of these olefins with SeO2 (Fieser's test, see Table), and in the acid catalyzed opening of the 7α, 8α-epoxides (e.g. 60 → 62 + 63 in the 13β-series, and 56 → 64 + 65 in the 13α-series, Scheme 8).  相似文献   

7.
The preparation of novel electrophilic building blocks for the synthesis of enantiomerically pure compounds (EPC) is described. Thus, the 2-(tert-butyl)dioxolanones, -oxazolidinones, -imidazolidinones, and -dioxanones obtained by acetalization of pivalaldehyde with 2-hydroxy-, 3-hydroxy-, or 2-amino-carboxylic acids are treated with N-bromosuccinimide under typical radical-chain reaction conditions (azoisobuytyronitril/CCl4/reflux). Products of bromination in the α-position of the carbonyl group of the five-membered-ring acetals are isolated or identified ( 2, 5 , and 8 ; Scheme 1). The dioxanones are converted to 2H, 4H-dioxinones under these conditions ( 12 , 14 , 15 , 21 , and 22 ; Schemes 2 and 3). The products can be converted to chiral derivatives of pyruvic acid (methylidene derivatives 3 and 6 ) or of 3-oxo-butanoic and -pentanoic acid ( 16 and 23 ). The mechanism of the brominations is interpreted. The conversion of serine to enactiomcrically pure dioxanones 26–28 (Scheme 4) is also discussed.  相似文献   

8.
(1R,2S,4R)-2-Cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yl (1S′)-camphanate ( 5 ) was transformed into (?)-methyl 2,5-anhydro-3,4,6-O-tris[(tert-butyl)dimethylsilyl]-D -allonate ( 2 ), (+)-1,3-diphenyl-2-{2′,3′,5′-O-tris[(tert-butyl)dimethylsilyl]-β-D -ribofuranosyl}imidazolidine ( 3 ), and the benzamide 20 of 1-amino-2,5-anhydro-1-deoxy-3,4,6-O-tris-[((tert-butyl)dimethylsily)]-D -allitol. Compound 2 was converted efficiently into optically active tiazofurin ( 1 ).  相似文献   

9.
Enantiomerically pure cis- and trans-5-alkyl-1-benzoyl-2-(tert-butyl)-3-methylimidazolidin-4-ones ( 1, 2, 11, 15, 16 ) and trans-2-(tert-butyl)-3-methyl-5-phenylimidazolidin-4-one ( 20 ), readily available from (S)-alanine, (S)-valine, (S)-methionine, and (R)-phenylglycine are deprotonated to chiral enolates (cf. 3, 4, 12, 21 ). Diastereoselective alkylation of these enolates to 5,5-dialkyl- or 5-alkyl-5-arylimidazolidinones ( 5, 6, 9, 10, 13a-d, 17, 18, 22 ) and hydrolysis give α-alkyl-α-amino acids such as (R)- and (S)-α-methyldopa ( 7 and 8a , resp.), (S)-α-methylvaline ( 14 ), and (R)-α-methyl-methionine ( 19 ). The configuration of the products is proved by chemical correlation and by NOE 1H-NMR measurements (see 23, 24 ). In the overall process, a simple, enantiomerically pure α-amino acid can be α-alkylated with retention or with inversion of configuration through pivaladehyde acetal derivatives. Since no chiral auxiliary is required, the process is coined ‘self-reproduction of a center of chirality’. The method is compared with other α-alkylations of amino acids occurring without racemization. The importance of enantiomerically pure, α-branched α-amino acids as synthetic intermediates and for the preparation of biologically active compounds is discussed.  相似文献   

10.
A wide range of cyclic and open-chain α,α-disubstituted α-amino acids 1a-p were prepared. The racemic N-acylated α,α-disubstituted amino acids were resolved by coupling to chiral amines 15-18 derived from (S)-phenylalanine to form diastereoisomers 19/20 or 21/22 that could be separated by crystallization and/or flash chromatography on silica gel (Scheme 3). Selective cleavage via the 1,3-oxazol-5(4H)-ones 10a-p gave the corresponding optically pure α,α-disubstituted amino-acid derivatives 11 or 12 in high yield (Scheme 3). The absolute configurations of the α,α-disubstituted amino acids were determined from X-ray structures of the diastereoisomers 20, 21g′, 22d .  相似文献   

11.
The four α,α,α, β,β,β,-hexamethyl α-hydrogen Coα, Coβ-dicyanocobyrinates 2b, d–f , with a free b-, d-, e-, and f-propionic-acid function, respectively, were prepared by partial hydrolysis of heptamethyl Coα, Coβ-dicyanocobyrinate (cobester; 1 ) in aqueous sulfuric acid. The cobester monoacids 2b, d–f were obtained as a ca. 1:1:1:1 mixture which was separated. The monoacids were purified by chromatography and isolated in crystalline form. The position of the free propionic-acid function was determined by an extensive analysis of 2b, d–f using 2D-NMR techniques; an analysis of the C,H-coupling network topology resulted in an alternative assignment strategy for cobyrinic-acid derivatives, based on pattern recognition. Additional information on the structure of the most polar of the four hexamethyl cobyrinates, of the b-isomer 2b , was also obtained in the solid state from a single-crystal X-ray analysis. Earlier structural assignments based on 1D-NMR spectra of the corresponding regioisomeric monoamides 3b, d–f (obtained from crystalline samples of the monoacids 2b, d–f ) were confirmed by the present investigations.  相似文献   

12.
Overall Enantioselective α-Alkylation of Aspartic and Glutamic Acid through Dilithium Enolatocarboxylates of 2- [3-Benzoyl-2-(tert-butyl)-1-methyl-5-oxoimidazolidin-4-yl]acetic and 3-[3-Benzoyl-2-(tert-butyl)-1-methyl-5-oxoimidazolidin-4-yl]propionic Acid, respectively The pure methyl esters 10 of the heterocyclic carboxylic acids specified in the title were prepared in several steps by known methods from aspartic and glutamic acid, with overall yields of ca. 20%. The corresponding heterocyclic acids 11 were doubly deprotonated by LiNEt2/BuLi or LiN(i-Pr)2/BuLi to give enolatocarboxylates ( 3 ). The latter were reacted with electrophiles (MeOD, Mel, C6H5CH2Br) to give the crystalline products 14 – 21 diastereoselectively. Hydrolysis of the imidazolidinone ring of three such products gave the corresponding α-branched aspartic and glutamic acids 22 – 24 of known absolute configuration, thus establishing the stereochemical course of the overall enantioselective alkylations.  相似文献   

13.
The title dicarboxylic acid 1d has been prepared in 24% overall yield via, 1,4-diazabicyclo[2.2.2]octane (DABCO)-catalyzed coupling of ethanal and tert-butyl propenoate ( 3 ) to 4 , SN2′-reaction to tert-butyl (Z)-2-romomethyl-2-butenoate ( 5a ), dehydrobrominatin to tert-butyl 2-methylidene-3-butenoate ( 2c ), dimerizatoin to di-tert-butyl 4-vinyl-1-cyclohexene-1,4-dicarboxylate ( 1c ) and acidic ester cleavage. Acidic cleavage of easily obtainable 5a affords (Z)-2-bromomethyl-2-butenoic acid ( 5a ) in 68% yield with respect to ethanal.  相似文献   

14.
Tordanone, a Twice Bent Steroid Structure with Ring A/B β-cis(5β)- and Ring B/C α-cis(8α)-Fused The 3β, 14α, 25-trihydroxy-5β, 8α-cholestan-6-one ( = tordanone; 4 ) has been prepared by stereospecific hydrogenation of 3β, 14α, 25-trihydroxy-5β-cholesta-7,22ξ-dien-6-one ( 5 ). This is the first stereospecific synthesis of a B/C cis-fused steroid belonging to the 5β, 8α -cholestane group with a H-atom at positions 5β (A/B cis-fused) and 8α. The resulting twice bent structure shows a particularly strong steric hindrance of the β-face where CH3(18) at the C/D ring junction and Hβ? C(7) of the B ring are very close to each other. Structural features and mechanistic aspects of the hydrogenation are discussed.  相似文献   

15.
L -Aspartic acid by tosylation, anhydride formation, and reduction with NaBH4 was converted into (3S)-3-(tosylamino)butan-4-olide ( 8 ; Scheme 1). Tretment of 8 with ethanolic trimethylsilyl iodide gave the N-protected deoxy-iodo-β-homoserine ethyl ester 9 . The latter, on successive nucleophilic displacement with lithium dialkyl-cuprates ( → 10a–e ), alkaline hydrolysis ( → 11a–e ), and reductive removal of the tosyl group, produced the corresponding 4-substituted (3R)-3-aminobutanoic acids 12a–e (ee > 99%). Electrophilic hydroxylation of 8 ( → 19 ; Scheme 3), subsequent iodo-esterification ( → 21 ; Scheme 4), and nucleophilic alkylation and phenylation afforded, after saponification and deprotection, a series of 4-substituted (2S, 3R)-3-amino-2-hydroxybutanoic acids 24 including the N-terminal acids 24e ( = 3 ) and 24f ( = 4 ) of bestatin and microginin (de > 95%), respectively.  相似文献   

16.
The (−)‐ and (+)‐β‐irones ((−)‐ and (+)‐ 2 , resp.), contaminated with ca. 7 – 9% of the (+)‐ and (−)‐transα‐isomer, respectively, were obtained from racemic α‐irone via the 2,6‐trans‐epoxide (±)‐ 4 (Scheme 2). Relevant steps in the sequence were the LiAlH4 reduction of the latter, to provide the diastereoisomeric‐4,5‐dihydro‐5‐hydroxy‐transα‐irols (±)‐ 6 and (±)‐ 7 , resolved into the enantiomers by lipase‐PS‐mediated acetylation with vinyl acetate. The enantiomerically pure allylic acetate esters (+)‐ and (−)‐ 8 and (+)‐ and (−)‐ 9 , upon treatment with POCl3/pyridine, were converted to the β‐irol acetate derivatives (+)‐ and (−)‐ 10 , and (+)‐ and (−)‐ 11 , respectively, eventually providing the desired ketones (+)‐ and (−)‐ 2 by base hydrolysis and MnO2 oxidation. The 2,6‐cis‐epoxide (±)‐ 5 provided the 4,5‐dihydro‐4‐hydroxy‐cisα‐irols (±)‐ 13 and (±)‐ 14 in a 3 : 1 mixture with the isomeric 5‐hydroxy derivatives (±)‐ 15 and (±)‐ 16 on hydride treatment (Scheme 1). The POCl3/pyridine treatment of the enantiomerically pure allylic acetate esters, obtained by enzymic resolution of (±)‐ 13 and (±)‐ 14 , provided enantiomerically pure cisα‐irol acetate esters, from which ketones (+)‐ and (−)‐ 22 were prepared (Scheme 4). The same materials were obtained from the (9S) alcohols (+)‐ 13 and (−)‐ 14 , treated first with MnO2, then with POCl3/pyridine (Scheme 4). Conversely, the dehydration with POCl3/pyridine of the enantiomerically pure 2,6‐cis‐5‐hydroxy derivatives obtained from (±)‐ 15 and (±)‐ 16 gave rise to a mixture in which the γ‐irol acetates 25a and 25b and 26a and 26b prevailed over the α‐ and β‐isomers (Scheme 5). The (+)‐ and (−)‐cisγ‐irones ((+)‐ and (−)‐ 3 , resp.) were obtained from the latter mixture by a sequence involving as the key step the photochemical isomerization of the α‐double bond to the γ‐double bond. External panel olfactory evaluation assigned to (+)‐β‐irone ((+)‐ 2 ) and to (−)‐cisγ‐irone ((−)‐ 3 ) the strongest character and the possibility to be used as dry‐down note.  相似文献   

17.
On triplet excitation (E)- 2 isomerizes to (Z)- 2 and reacts by cleavage of the C(γ), O-bond to isomeric δ-ketoester compounds ( 3 and 4 ) and 2,5-dihydrofuran compounds ( 5 and 19 , s. Scheme 1). - On singulet excitation (E)- 2 gives mainly isomers formed by cleavage of the C(γ), C(δ)-bond ( 6–14 , s. Scheme 1). However, the products 3–5 of the triplet induced cleavage of the C(γ), O-bond are obtained in small amounts, too. The conversion of (E)- 2 to an intermediate ketonium-ylide b (s. Scheme 5) is proven by the isolation of its cyclization product 13 and of the acetals 16 and 17 , the products of solvent addition to b . - Excitation (λ = 254 nm) of the enol ether (E/Z)- 6 yields the isomeric α, β-unsaturated ε-ketoesters (E/Z)- 8 and 9 , which undergo photodeconjugation to give the isomeric γ, δ-unsaturated ε-ketoesters (E/Z)- 10 . - On treatment with BF3O(C2H5)2 (E)- 2 isomerizes by cleavage of the C(δ), O-bond to the γ-ketoester (E)- 20 (s. Scheme 2). Conversion of (Z)- 2 with FeCl3 gives the isomeric furan compound 21 exclusively.  相似文献   

18.
Nucleophilic substitution of 6β-chloro-7,8-didehydro-4,5α-epoxy-3-methoxy-17-methylmorphinan ( 1 ) and 8α-bromo-6,7-didehydro-4,5α-epoxy-3-methoxy-17-methylmorphinan ( 2 ) with lithium cyano(methyl)- and (aryl)cyanocuprates(I) ( 5a–c ) was accompanied by allylic rearrangement with both change and retention of orientation of the substituting group (Scheme 1, Table 1). Nucleophilic substitution in 7,8-didehydro-4,5α-epoxy-3-methoxy-17-methylmorphinan-6α-yl methanesulfonate ( 3 ) and 7,8-didehydro-4,5α-epoxy-3-methoxy-17-methylmorphinan-6β-yl methanesulfonate ( 4 ) proceeded without allylic rearrangement with both change and retention of the orientation of the substituting group (Scheme 2, Table 1). X-Ray diffraction studies of the products 6,7-didehydro-4,5α-epoxy-3-methoxy-17-methyl-8α-phenylmorphinan ( 6b ) and 7,8-didehydro-4,5α-epoxy-3-methoxy-17-methyl-6β-phenylmorphinan ( 7b ) were carried out (Figs. 1 and 2).  相似文献   

19.
The condensation of the acetylmethylene group in the tert-butyl esters of 7Z-acetylmethylene-3-methyl-3-cephem-4-carboxylic acid and 7Z-acetylmethylene-3-methyl-1,1-dioxo-3-cephem-4-carboxylic acid and in 7Z-acetylmethylene-3-methylene-1,1-dioxo-3-cephem with arylmethoxyamines and O-alkylation of the tert-butyl ester of 7Z-(2-hydroxyimino)propylidene-3-methyl-1,1-dioxo-3-cephem-4-carboxylic acid using substituted benzyl bromides as well as pyridylmethyl chlorides gave arylmethoxyimino and pyridylmethoxyimino derivatives of these compounds in the syn and anti isomeric forms. The Vilsmaier reagent was used to introduce the N,N-dimethylaminomethylene group at C-2 of the cephem system in the tert-butyl esters of 7Z-[2-(arylmethoxyimino)propylidene]-3-methyl-1,1-dioxo-3-cephem-4-carboxylic acid. Subsequent transformation of the N,N-dimethylaminomethylene cephems using hydroxylamine led to 3Z-[2-(anti-arylmethoxyimino)propylidene]-tert-butoxycarbonylmethyl-4-(5-methyl-4-isoxazolylsulfonyl)- azetidin-2-ones. Condensation of the acetyl group in the tert-butyl ester of 7Z-acetylmethylene- 3-methyl-1,1-dioxo-3-cephem-4-carboxylic acid with 4-bromophenylhydrazine gave a cephem with a 2-(4-bromophenylhydrazono)propylidene group at C-7. Acylation of the tert-butyl ester of 7Z-(2-hydroxyimino)propylidene-3-methyl-1,1-dioxo-3-cephem-4-carboxylic acid by 2-bromobenzoyl chloride gave a cephem with a 2-(2-bromo-benzoyloxyimino)propylidene group at C-7. Biological screening of these products towards to malignant and normal cells in vitro showed that their antitumor activity and cytotoxic selectivity towards to malignant and normal cells depend on the structure and configuration of the arylmethoxyimino and pyridylmethoxyimino groups in the 7-alkylidene substituent as well as on the presence or absence of N,N-dimethylaminomethylene and carboxyl groups, respectively, at C-2 and C-4 of the cephem system.  相似文献   

20.
The pH dependence of the α-chymotrypsin-catalyzed hydrolysis of dimethyl 3-hydroxyglutarate ( 3 ) has been studied. The e.e. was determined by HPLC analysis of diastereoisomeric camphanoic-acid derivatives. Kinetic resolution of the β,α-epoxy esters 10 and 24 by pig liver esterase has been shown to provide an alternative access to chiral β-hydroxy esters and acids of high optical purity. By this latter method, the unnatural enantiomer of γ-amino-β-hydroxybutyric acid (GABOB) has been synthesized. Finally, dimethyl meso-3,4-epoxyadipate ( 19 ) was hydrolyzed by pig liver esterase with almost 100% selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号