首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate constants for the reactions of OH radicals and Cl atoms with diethyl sulfide (DES), di-n-propyl sulfide (DPS), and di-n-butyl sulfide (DBS) have been determined at 295 ± 3 K and a total pressure of 1 atm. Hydroxyl radical rate data was obtained using the absolute technique of pulse radiolysis combined with kinetic spectroscopy. The chlorine atom rate constants were measured using a conventional photolytic relative rate method. The rate constant for the reaction of Cl atoms with dimethyl sulfide (DMS) was also determined. The following rate constants were obtained:   相似文献   

2.
Ethers are being increasingly used as motor fuel additives to increase the octane number and to reduce CO emissions. Since their reaction with hydroxyl radicals (OH) is a major loss process for these oxygenated species in the atmoshpere, we have conducted a relative rate study of the kinetics of the reactions of OH radicals with a series of ethers and report the results of these measurements here. Experiments were performed under simulated atmospheric conditions; atmospheric pressure (? 740 torr) in synthetic air at 295 K. Using rate constants of 2.53 × 10?12, and 1.35 × 10?11 cm3 molecule?1 s?1 for the reaction of OH radicals with n-butane and diethyl ether, the following rate constants were derived, in units of 10?11 cm3 molecule?1 s?1: dimethylether, (0.232 ± 0.023); di-n-propylether, (1.97 ± 0.08); di-n-butylether, (2.74 ± 0.32); di-n-pentylether, (3.09 ± 0.26); methyl-t-butylether, (0.324 ± 0.008); methyl-n-butylether, (1.29 ± 0.03); ethyl-n-butylether, (2.27 ± 0.09); and ethyl-t-butylether, (0.883 ± 0.026). Quoted errors represent 2σ from the least squares analysis and do not include any systematic errors associated with uncertainties in the reference rate constants used to place our relative measurements on an absolute basis. The implications of these results for the atmospheric chemistry of ethers are discussed.  相似文献   

3.
Ethyl tertiary butyl ether (ETBE) is being proposed as an additive for use in reformulated gasolines. In this study, experiments were performed to examine the kinetics and mechanism of the atmospheric removal of ETBE. The kinetics of the reaction of ETBE with OH radicals were examined by using a relative rate technique with the photolysis of methyl nitrite to generate OH radicals. With n-hexane as the reference compound, a value of (9.73 ± 0.33) × 10?12 cm3 molecule?1 s?1 was obtained for the rate constant. The OH rate constant for t-butyl acetate, a product of the oxidation of ETBE, was (4.4 ± 0.4) × 10?13 cm3 molecule?1 s?1 at 298 K. The primary products and molar yields for the OH reaction with ETBE in the presence of NOx were t-butyl formate (0.64 ± 0.03), t-butyl acetate (0.13 ± 0.01), ethyl acetate (0.043 ± 0.003), acetaldehyde (0.16 ± 0.01), acetone (0.019 ± 0.002), and formaldehyde (0.53 ± 0.04). Under the described reaction conditions, the formation of t-butyl nitrite was also observed. From these molar yields, approximately 98% of the reacted ETBE could be accounted for by paths leading to these products. Chemical mechanisms to explain the formation of these products are presented.  相似文献   

4.
The rate constants for the reactions of OH with dimethyl ether (k1), diethyl ether (k2), di-n-propyl ether (k3), di-isopropyl ether (k4), and di-n-butyl ether (k5) have been measured over the temperature range 230–372 K using the pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique. The temperature dependence of k1,k4, can be expressed in the Arrhenius plots form: k1 = (6.30 ± 0.10) × 10?12 exp[?(234 ± 34)/T] and k4 = (4.13 ± 0.10) × 10?12 exp[(274 ± 26)/T]. The Arrhenius plots for k2,k3, and k5, were curved and they were fitted to the three parameter expressions: k2 = (1.02 ± 0.08) × 10?17 T2 exp[(797 ± 24)/T], k3 = (1.84 ± 0.23) × 10?17T2 exp[(767 ± 34)/T], and k5 = (6.29 ± 0.74) × 10?18T2 exp[(1164 ± 34)/T]. The values at 298 K are (2.82 ± 0.21) × 10?12, (1.36 ± 0.11) × 10?11,(2.17 ± 0.16) × 10?11, (1.02 ± 0.10) × 10?11, and (2.69 ± 0.22) × 10?11 for k1, k2, k3, k4, and k5, respectively, (in cm3 molecule?1 s?1). These results are compared to the literature data. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Rate constants for the tri-n-butyltin radical ( Sn · ) induced decomposition of a number of peroxides have been measured in benzene at 10°C. The values range from ~100 M?1 sec?1 for di-t-butyl peroxide to 2.6 × 107 M?1 sec?1 for di-t-butyl diperoxyisophthalate. The majority of the peroxides, including diethyl peroxide, diacetyl peroxide, and t-butyl peracetate, have rate constants of ~105 M?1 sec?1. It is shown that di-n-alkyl disulfides are ten times as reactive toward Sn · as di-n-alkyl peroxides, although the exothermicities of these reactions are ~15 and ~39 kcal/mole, respectively. The enhanced reactivity of the disulfides is attributed to the easier formation of an intermediate or transition state with 9 electrons around sulfur, compared with an analogous species with 9 electrons around oxygen. The following bond strengths (kcal/mole) have been estimated: D[ Sn ? OR] = 77; D[ Sn ? H] = 82; D[ Sn ? SR] = 83; and D[ Sn ? OC(O)R] = 86, where R = alkyl. Rate constants for reaction of Sn · with some benzyl esters have also been measured. It has been found that t-butoxy radicals can add to benzene and abstract hydrogen from benzene at ambient temperatures.  相似文献   

6.
Absolute rate coefficients for the reactions of the hydroxyl radical with dimethyl ether (k1) and diethyl ether (k2) were measured over the temperature range 295–442 K. The rate coefficient data, in the units cm3 molecule?1 s?1, were fitted to the Arrhenius equations k1 (T) = (1.04 ± 0.10) × 10?11 exp[?(739 ± 67 cal mol?1)/RT] and k2(T) = (9.13 ± 0.35) × 10?12 exp[+(228 ± 27 kcal mol?1)/RT], respectively, in which the stated error limits are 2σ values. Our results are compared with those of previous studies of hydrogen-atom abstraction from saturated hydrocarbons by OH. Correlations between measured reaction-rate coefficients and C? H bond-dissociation energies are discussed.  相似文献   

7.
Methyl tertiary butyl ether (MTBE) has been proposed and is being used as an additive to increase the octane of gasoline without the use of tetraethyl lead and alkylbenzenes. The present experiments have been performed to examine the kinetics and mechanisms of the atmospheric removal of MTBE. The kinetics of the reaction of OH with MTBE was examined by using a relative rate technique in which photolysis of methyl nitrite was used as the source of OH. With n-butane as the reference compound a value of (2.99 ± 0.12) × 10?12 cm3 molecule?1 s?1 at a temperature of 298 K was obtained for the rate constant. The products (and product yields) for the OH reaction with MTBE in the presence of NOx were also determined and found to be t-butyl formate (0.68 ± 0.05), methyl acetate (0.14 ± 0.02), acetone (0.026 ± 0.003), t-butanol (0.062 ± 0.009), and formaldehyde (0.48 ± 0.05) in mols/mol MTBE converted. The OH rate constant for the major product formed, t-butyl formate was also measured and found to be (7.37 ± 0.05) × 10?13 cm3 molecule?1 s?1. Mechanisms to rationalize the formation of the products are presented.  相似文献   

8.
《Polyhedron》1987,6(6):1313-1317
Nickel(II) perchlorate and nitrate complexes containing dimethyl, di-n-propyl, di-n-butyl, di-i-butyl and di-t-butyl sulfoxides have been synthesized and characterized by IR and electronic spectroscopies, magnetic-susceptibility and electrolytic-conductance measurements. In the complexes containing perchlorate, the metal: sulfoxide molar ratio is 1:6 and the perchlorate groups are ionic. In the nitrate compounds, the molar ratio decreases from 1:6 to 1:2 according to the increase in the steric bulk of the alkyl group from methyl to t-butyl. The nitrate group may either be non-coordinating or behave as a monodentate or bidentate ligand. All the complexes contain O-bonded sulfoxide molecules and are characterized as high-spin, with an octahedral or distorted octahedral geometry. The dialkyl sulfoxides studied in this work fall in the same position as dimethyl sulfoxide in the spectrochemical and nephelauxetic series. Electrolytic conductivities suggest that the compounds containing ionic nitrate exhibit sulfoxide—nitrate exchange in nitromethane solutions.  相似文献   

9.
The kinetics of the reaction of OH radicals with t-amyl methyl ether (TAME) have been reinvestigated using both absolute (flash photolysis resonance fluorescence) and relative rate techniques. Relative rate experiments were conducted at 295 K in 99 kPa (740 torr) of synthetic air using ethyl t-butyl ether, cyclohexane, and di-isopropyl ether as reference compounds. Absolute rate experiments were performed over the temperature range 240–400 K at a total pressure of 4.7 kPa (35 torr) of argon. Rate constant determinations from both techniques are in good agreement and can be represented by k1=(6.32 ± 0.72) × 10?12 exp[(?40 ± 70)/T] cm3 molecule?1 s?1. Quoted errors represent 2σ from the least squares analysis and do not include any estimate of systematic errors. We show that results from the previous kinetic study of reaction (1) are in error due to the presence of a reactive impurity. Results are discussed in terms of the atmospheric chemistry of TAME. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The laser photolysis–resonance fluorescence technique has been used to determine the absolute rate coefficient for the Cl atom reaction with a series of ethers, at room temperature (298 ± 2) K and in the pressure range 15–60 Torr. The rate coefficients obtained (in units of cm3 molecule−1 s−1) are dimethyl ether (1.3 ± 0.2) × 10−10, diethyl ether (2.5 ± 0.3) × 10−10, di‐n‐propyl ether (3.6 ± 0.4) × 10−10, di‐n‐butyl ether (4.5 ± 0.5) × 10−10, di‐isopropyl ether (1.6 ± 0.2) × 10−10, methyl tert‐butyl ether (1.4 ± 0.2) × 10−10, and ethyl tert‐butyl ether (1.5 ± 0.2) × 10−10. The results are discussed in terms of structure–reactivity relationship. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 105–110, 2000  相似文献   

11.
The kinetics of the gas‐phase reactions of O3 with a series of selected terpenes has been investigated under flow‐tube conditions at a pressure of 100 mbar synthetic air at 295 ± 0.5 K. In the presence of a large excess of m‐xylene as an OH radical scavenger, rate coefficients k(O3+terpene) were obtained with a relative rate technique, (unit: cm3 molecule?1 s?1, errors represent 2σ): α‐pinene: (1.1 ± 0.2) × 10?16, 3Δ‐carene: (5.9 ± 1.0) × 10?17, limonene: (2.5 ± 0.3) × 10?16, myrcene: (4.8 ± 0.6) × 10?16, trans‐ocimene: (5.5 ± 0.8) × 10?16, terpinolene: (1.6 ± 0.4) × 10?15 and α‐terpinene: (1.5 ± 0.4) × 10?14. Absolute rate coefficients for the reaction of O3 with the used reference substances (2‐methyl‐2‐butene and 2,3‐dimethyl‐2‐butene) were measured in a stopped‐flow system at a pressure of 500 mbar synthetic air at 295 ± 2 K using FT‐IR spectroscopy, (unit: cm3 molecule?1 s?1, errors represent 2σ ): 2‐methyl‐2‐butene: (4.1 ± 0.5) × 10?16 and 2,3‐dimethyl‐2‐butene: (1.0 ± 0.2) × 10?15. In addition, OH radical yields were found to be 0.47 ± 0.04 for 2‐methyl‐2‐butene and 0.77 ± 0.04 for 2,3‐dimethyl‐2‐butene. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 394–403, 2002  相似文献   

12.
The rate constants of the isopropyl acetate, n-propyl acetate, isopropenyl acetate, n-propenyl acetate, n-butyl acetate, and ethyl butyrate reactions with OH radicals were determined in purified air under atmospheric conditions, at 750 torr and (295 ± 2) K. A relative rate experimental method was used; n-heptane, n-octane, and n-nonane were the reference compounds, with, respectively, rate constants for the reaction with OH of 7.12 × 10−12, 8.42 × 10−12, and 9.70 × 10−12 molecule−1 cm3s−1. The following rate constants were obtained in units of 10−12 molecule−1 cm3s−1; isopropyl acetate, (3.12 ± 0.29); n-propyl acetate, (1.97 ± 0.24); isopropenyl acetate, (62.53 ± 1.24); n-propenyl acetate, (24.57 ± 0.24); n-butyl acetate, (3.29 ± 0.35); and ethyl butyrate, (4.37 ± 0.42). Tertiary butyl acetate has a low reactivity with OH radicals (<1 × 10−12 molecule−1 cm3s−1). © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Molar enthalpies of vaporization of aliphatic alkyl carbonates: dimethyl carbonate [616-38-6], diethyl carbonate [105-58-8], di-n-propyl carbonate [623-96-1], di-n-butyl carbonate [542-52-9], and dibenzyl carbonate [3459-92-5] were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. A large number of the primary experimental results on temperature dependences of vapour pressures have been collected from the literature and have been treated uniformly in order to derive vaporization enthalpies of dialkyl carbonates at the reference temperature 298.15 K. An internal consistency check was performed on enthalpy of vaporization values for dialkyl carbonates studied in this work.  相似文献   

14.
The kinetics of the reaction of OH radicals with methyl, n-propyl, and n-butyl nitrite have been studied in a discharge flow system under pseudo first-order conditions. The OH radicals were generated by the reaction of H atoms with NO2 and the concentration of OH; monitored by resonance fluorescence, was followed as a function of time in an excess of each nitrite. Values of k(CH3ONO) = (0.6 ± 0.09) × 109 dm3 mol?1 s?1 k(n – C3H7ONO) = (1.39 ± 0.20) × 109 dm3 mol?1 s?1, and k(n – C4H9ONO) = (2.89 ± 0.43) × 109 dm3 mol?1 s?1 at 295 K were obtained. These results agree with previous relative rate measurements from this laboratory but the value for k (CH3ONO) is a factor of 7 greater than the value obtained by relative rate measurements elsewhere using a different OH source.  相似文献   

15.
Tertiary-amyl methyl ether (TAME) is proposed for use as an additive to increase the oxygen content of gasoline as stipulated in the 1990 Clean Air Amendments. The present experiments have been performed to examine the kinetics and mechanisms of the atmospheric removal of TAME. The kinetics of the reaction of OH with TAME was examined by using a relative rate technique in which photolysis of methyl nitrite or nitrous acid was used as the source of OH. The OH rate constant for TAME and two major products (t-amyl formate and methyl acetate) were measured and yields for ten products were determined as primary products from the reaction. Values determined for the rate constants for the reaction with OH were 5.48 × 10?12 (TAME), 1.75 × 10?12 (t-amyl formate), and 3.85 × 10?13 cm3 molec?1 s?1 (methyl acetate) at 298 ± 2 K. The primary products (with corrected yields where required) from the OH + TAME that have been observed include (1) t-amyl formate (0.366), methyl acetate (0.349), acetaldehyde (0.43, corrected), acetone (0.036), formaldehyde (0.549), t-amyl alcohol (0.026), 3-methyoxy-3-methyl-butanal (0.044, corrected), t-amyloxy methyl nitrate (0.029), 3-methyoxy-3-methyl-2-butyl nitrate (0.010), and 2-methoxy-2-methyl butyl nitrate (0.004). Mechanisms leading to these products involve OH abstraction from each of the four different hydrogen atoms of TAME. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Using a relative rate method, rate constants for the gas-phase reactions of the OH radical with 1- and 2-propyl nitrate, 1- and 2-butyl nitrate and 1-nitrobutane have been determined in the presence of one atmosphere of air at 298 ± 2 K. Using rate constants for the reactions of the OH radical with propane and cyclohexane of 1.15 × 10?12 and 7.49 × 10?12 cm3 molecule?1 s?1, respectively, following rate constants (in units of 10?12 cm3 molecule?1 s?1) were obtained: 1-propyl nitrate, 0.62; 2-propyl nitrate, 0.41; 1-butyl nitrate, 1.78; 2-butyl nitrate, 0.93; and 1-nitrobutane, 1.35. These rate constants are compared and discussed with the literature data.  相似文献   

17.
The relative rate technique has been used to measure rate constants for the reaction of chlorine atoms with nitro methane, nitro ethane, nitro propane, nitro butane, nitro pentane, ethyl nitrate, isopropyl nitrate, n-propyl nitrate, 2-pentyl nitrate, and 2-heptyl nitrate. Decay rates of these organic species were measured relative to one or more of the following reference compounds; n-butane, ethane, chloroethane, and methane. Using rate constants of 2.25 × 10?10 5.7 × 10?11, 8.04 × 10?12, and 1.0 × 10?13 cm3 molecule?1 s?1 for the reaction of Cl atoms with n-butane, ethane, chloroethane, and methane, respectively, the following rate constants were derived, in units of cm3 molecule?1 s?1: nitro methane, <7 × 10?15; nitro ethane, (2.05 ± 0.14) × 10?13; nitro propane, (1.13 ± 0.05) × 10?11; nitro butane, (5.13 ± 0.68) × 10?11; nitro pentane, (1.40 ± 0.14) × 10?10; ethyl nitrate, (3.70 ± 0.24) × 10?12; n-propyl nitrate, (2.15 ± 0.13) × 10?11; i-propyl nitrate, (3.94 ± 0.48) × 10?12; 2-pentyl nitrate, (1.00 ± 0.06) × 10?10; and 2-heptyl nitrate, (2.84 ± 0.50) × 10?10. Quoted errors represent 2σ and do not include possible systematic errors due to errors in the reference rate constants. Experiments were performed at 295 ± 2 K and atmospheric pressure (?740 torr) of synthetic air. The results are discussed with respect to the previous literature data and to the modeling of these compounds in the atmosphere.  相似文献   

18.
《Fluid Phase Equilibria》2005,238(2):137-141
The liquid–liquid equilibria (LLE) of eight binary systems containing 1-methylimidazole and n-alkanes (n-pentane, n-hexane), cyclohydrocarbons (cyclopentane, cyclohexane), aromatic hydrocarbons (hexylbenzene) or ethers (di-n-propyl ether, di-n-butyl ether, di-n-pentyl ether) have been measured from 270 K to the boiling temperature of the solvent using a “cloud point” method. Experimental solubility results are compared with values calculated by means of the NRTL equation utilizing parameters derived from LLE results.Solubility of 1-methylimidazole in many other organic solvents (aromatic hydrocarbons, branch chain ethers and ketones) has been measured at temperatures higher than 293 K and no miscibility gap was observed. The interaction of 1-methylimidazole with different solvents is discussed.  相似文献   

19.
The rate constants for the gas-phase reactions of di-tert-butyl ether (DTBE) with chlorine atoms, hydroxyl radicals, and nitrate radicals have been determined in relative rate experiments using FTIR spectroscopy. Values of k(DTBE+CI) = (1.4 ± 0.2) × 10−10,k(DTBE+OH) = (3.7 ± 0.7) × 10−12, and k(DTBE+N03) = (2.8 ± 0.9) × 10−16 cm3 molecule−1 s−1 were obtained. Tert-butyl acetate was identified as the major product of both Cl atom and OH radical initiated oxidation of DTBE in air in the presence of NOx. The molar tert-butyl acetate yield was 0.85 ± 0.11 in the Cl atom experiments and 0.84 ± 0.11 in OH radical experiments. As part of this work the rate constant for reaction of Cl atoms with tert-butyl acetate at 295 K was determined to be (1.6 ± 0.3) × 10−11 cm3 molecule−1 s−1. The stated errors are two standard deviations (2σ). © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Rate constants for the gas phase reCedex 2, Franceactions of O(3P) atoms with a series of symmetric aliphatic ethers have been determined using the flash photolysis resonance fluorescence technique over the temperature range 240–400 K. The Arrhenius parameters derived from these data are (in units of cm3 molecule ?1 s?1): The error limits are two standard deviations derived from the least-squares fit. Rate constants for several other ethers were determined only at 298 K. The values obtained were (in units of 10?14 cm3 molecule?1 s?1): tetrahydrofuran (37.5 ± 1.1); 1,4?dioxane 1(6.81 ± 0.46); diethoxymethane (40.4 ± 1.8); ethyl -t-butyl ether (37.0 ± 1.3); and methyl-t-amylether (57.3 ± 2.3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号