首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic Oligomers of (R)-3-Hydroxybutanoic Acid: Preparation and Structural Aspects The oligolides containing three to ten (R)-3-hydroxybutanoate (3-HB) units (12-through 40-membered rings 1–8 ) are prepared from the hydroxy acid itself, its methyl ester, its lactone (‘monolide’), or its polymer (poly(3-HB), mol. wt. ca. 106 Dalton) under three sets of conditions: (i) treatment of 3-HB ( 10 ) with 2,6-dichlorobenzoyl chloride/pyridine and macrolactonization under high dilution in toluene with 4-(dimethylamino)pyridine (Fig. 3); (ii) heating a solution (benzene, xylene) of the β-lactone 12 or of the methyl ester 13 from 3-HB with the tetraoxadistanna compound 11 as trans-esterification catalyst (Fig. 4); (iii) heating a mixture of poly(3-HB) and toluene-sulfonic acid in toluene/1,2-dichloroethane for prolonged periods of time at ca. 100° (Fig. 6). In all three cases, mixtures of oligolides are formed with the triolide 1 being the prevailing component (up to 50% yield) at higher temperatures and with longer reaction times (thermodynamic control, Figs. 3–6). Starting from rac-β-lactone rac- 12 , a separable 3:1 to 3:2 mixture of the l,u- and the l,l-triolide diasteroisomers rac- 14 and rac- 1 , respectively, is obtained. An alternative method for the synthesis of the octolide 6 is also described: starting from the appropriate esters 15 and 17 and the benzyl ether 16 of 3-HB, linear dimer, tetramer, and octamer derivatives 18–23 are prepared, and the octamer 23 with free OH and CO2H group is cyclized (→ 6 ) under typical macrolactonization conditions (see Scheme). This ‘exponential fragment coupling protocol’ can be used to make higher linear oligomers as well. The oligolides 1–8 are isolated in pure form by vacuum distillation, chromatography, and crystallization, an important analytical tool for determining the composition of mixtures being 13C-NMR spectroscopy (each oligolide has a unique and characteristic chemical shift of the carbonyl C-atom, with the triolide 1 at lowest, the decolide 8 at highest field). The previously published X-ray crystal structures of triolide 1 , pentolide 3 , and hexolide 4 (two forms), as well as those of the l,u-triolide rac- 14 , of tetrolide ent- 2 , of heptolide 5 , and of two modifications of octolide 6 described herein for the first time are compared with each other (Figs. 7–10 and 12–15, Tables 2 and 5–7) and with recently modelled structures (Tables 3 and 4, Fig. 11). The preferred dihedral angles τ1 to τ4 found along the backbone of the nine oligolide structures (the hexamer and the larger ones all have folded rings!) are mapped and statistically evaluated (Fig. 16, Tables 5–7). Due to the occurrence of two conformational minima of the dihedral angle O? CO? CH2? CH (τ3 = + 151 or ?43°), it is possible to locate two types of building blocks for helices in the structures at hand: a right-handed 31 and a left-handed 21 helix; both have a ca. 6 Å pitch, but very different shapes and dispositions of the carbonyl groups (Fig. 17). The 21 helix thus constructed from the oligolide single-crystal data is essentially superimposable with the helix derived for the crystalline domains of poly(3-HB) from stretched-fiber X-ray diffraction studies. The absence of the unfavorable (E)-type arrangements around the OC? OR bond (‘cis-ester’) from all the structures of (3-HB) oligomers known so far suggests that the model proposed for a poly(3-HB)-containing ion channel (Fig. 2) must be modified.  相似文献   

2.
The triolide of (R)-3-hydroxybutanoic acid ((R,R,R,))-3,7,11-trimethyl-2,6,10-trioxadodecane-1,5,9-trione; ( 1 ), readily available from the corresponding biopolymer P(3-HB) in one step, forms crystalline complexes with alkali and alkaline earth salts. The X-ray crystal structures of three such complexes, (3 NaSCN)·4 1 ( 2 ), (2 KSCN)·2 1 · H2O ( 3 ), and (2) Ba(SCN)2 · 2 1 · 2 H2O · THF ( 4 ), have been determined and are compared. The triolide is found in these structures (i) as a free molecule, making no contacts with a cation (clathrate-type inclusion), (ii) as a monodentate ligand coordinated to a single ion with one carbonyl O-atom only, (iii) as a chelator, forming an eight-membered ring, with two carbonyl O-atoms attached to the same ion, (iv) as a linker, using two carbonyl O-atoms to bind to the two metals of an ion-X-ion unit (ten-membered ring), and (v), in a crown-ester complex, in which an ion is sitting on the three unidirectional C?O groups of a triolide molecule (Figs. 1–3). The crystal packing is such that there are columns along certain axes in the centers of which the cations are surrounded by counterions and triolide molecules, with the non-polar parts of 1 on the outside (Fig. 4). In the complexes 2–4 , the triolide assumes conformations which are slightly distorted, with the carbonyl O-atoms moved closer together, as compared to the ‘free’ triolide 1 (Fig. 5). These observed features are compatible with the view that oligo (3-HB) may be involved in the formation of Ca polyphosphate ion channels through cell membranes. A comparison is also made between the triolide structure in 1–4 and in enterobactin, a super Fe chelator (Fig. 5). To better understand the binding between the Na ion and the triolide carbonyl O-atoms in the crown-ester complex, we have applied electron-localization function (ELF) calculations with the data set of structure 2 , and we have produced ELF representations of ethane, ethene, and methyl acetate (Figs. 6–9). It turns out that this theoretical method leads to electron-localization patterns which are in astounding agreement with qualitative bonding models of organic chemists, such as the ‘double bond character of the CO? OR single bond’ or the ‘hyperconjugative n → σ* interactions between lone pairs on the O-atoms and neighbouring σ-bonds’ in ester groups (Fig. 8). The noncovalent, dipole/pole-type character of bonding between Na+ and the triolide carbonyl O-atoms in the crown-ester complex (the Na? O?C plane is roughly perpendicular to the O? C?O plane) is confirmed by the ELF calculation; other bonding features such as the C?N bond in the NaSCN complex 2 are also included in the discussion (Fig. 9).  相似文献   

3.
Monodisperse Linear and Cyclic Oligo[(R)-3-hydroxybutanoates] Containing up to 128 Monomeric Units Using benzyl ester/(tert-butyl)diphenylsilyl ether protection, (COCl)2/pyridine esterification conditions, and a fragment-coupling strategy (with H2/Pd-C debenzylation and HF · pyridine desilylation), linear oligomers of (R)-3-hydroxybutanoic acid (3-HB) containing up to 128 3-HB building blocks (mol. weight > 11 000 Da) are assembled (Schemes 1,2,5, and 6). In contrast to the previously employed protecting-group combination, and due to the low-temperature esterifying conditions, this procedure leads to monodisperse oligomers: all steps occur without loss of single 3-HB units. The product oligomers with two, one, and no terminal protecting groups (mostly prepared in multi-gram amounts) are characterized by all standard spectroscopic methods, especially by mass spectroscopy (Figs. 2 and 3), by their optical activity, and by elemental analyses. Cyclization of the oligo[(R)-3-hydroxybutanoic acids] with up to 32 3-HB units, using thiopyridine activation and CuBr2 for the ring closure, produces oligolides consisting of up to 128 ring atoms (Scheme 7). Mixed oligolides containing 3-HB and (R)-3-hydroxypentanoic units are prepared from the corresponding linear trimers, using Yamaguchi's method for the ring closure (Scheme 8 and Fig.4 (X-ray crystal structures of two folded conformers)). Comparisons of melting points (Table 1), of [α] values (Tables 2 and 3), of 1H-NMR coupling constants (Table 3), and of molecular volume/hydroxyalkanoate unit (Table 4) of linear and cyclic oligomer derivatives and of the high-molecular-weigh polymer show that the monodisperse oligomers appear to be surprisingly good models for the polymer. Besides this insight, our synthesis is supplying the samples to further test the role of P(3-HB) (ca. 140 units) as a component of complexes forming channels through cell-wall phospholipid bilayers.  相似文献   

4.
To study the stereoselectivity of enzymatic cleavage of poly(3-hydroxybutyrates) (PHB) in a well-defined system (purified depolymerase and monodisperse substrate of specific relative configuration), linear and cyclic oligomers of HB (OHBs) containing (R)- and (S)-3-hydroxybutanoate residues were synthesized. The starting material (R)-HB was prepared from natural sPHB, and (S)-HB by enantioselective reduction of 3-oxobutanoate with yeast or with H2/Noyori-Taber catalyst (Scheme 2). The HB building blocks were then protected (O-benzyl/tert-butyl ester; Scheme 3) and coupled to give dimers 3 , 4 , tetramers 5 – 9 , and octamers 10 – 18 ; for analytical comparison, a 3mer, 5mer, 6mer, and 7mer ( 19 – 22 ) were also prepared. Two of the tetramers were subjected to macrolactonization conditions (Yamaguchi) to give the cyclic tetramers 23 and 25 and octamers 24 and 26 . All new compounds were fully characterized (m.p., [α]D, CD, IR, 1H- and 13C-NMR, MS, elemental analysis). Single-crystal X-ray structure analyses were performed with oligolides 24 and 25 (Figs. 2 and 4), and the structures, as well as the crystal packing, were compared with those of analogs containing only (R)-HB units or consisting of 3-amino- instead of 3-hydroxybutanoic-acid moieties.  相似文献   

5.
Along with polyisoprenoids, polypeptides, polysaccharides, and polynucleotides, Nature contains a further group of biopolymers, the poly(hydroxyalkanoates). The commonest member of this group, poly[(R)-3-hydroxybutyrate] P(3-HB), had been identified by Lemoigne as early as the 1920s, as a storage substance in the microorganism Bacillus megaterium made up of more than 12000 (3-HB) units. However, the widespread distribution and significance of these biopolymers has only become clear recently. The work of Reusch, in particular, has shown that low molecular weight P(3-HB) (100–200 3-HB units) occurs in the cell membranes of prokaryotic and eukaryotic organisms. The function of P(3-HB) in the latter sources is largely unknown; it has been proposed that a complex of P(3-HB) and calcium polyphosphate acts as an ion channel through the membrane. Indeed, it has even been speculated that P(3-HB) plays a role in transport of DNA through the cell wall. In the present article, the following subjects will be discussed: metabolism of P(3-HB) and analogous polyesters in the synthesis and degradation of storage materials; P(3-HB) as a starting material for chiral synthetic building blocks; synthesis of cyclic oligomers (oligolides) of up to ten 3-HB units, and their crystal structure; high molecular weight bio-copolymers of hydroxybutyrate and hydroxyvalerate (BIOPOL) as biologically degradable plastics; nonbiological production of polyhydroxyalkanoates from 3-hydroxy carboxylic acids and the corresponding β-lactones; specific synthesis of linear oligomers with a narrow molecular weight distribution, consisting of about 100 (R)-3-hydroxybutyrate units, by using an exponential coupling procedure; structure of the polyesters, and a comparison with other polymers; the experimental results which led to the postulation of a P(3-HB) ion channel through the cell wall; modeling of P(3-HB) helices of various diameters, by using the parameters obtained from the crystal structures of oligolides; formation of a crown ester complex and ion transport experiments with the triolide of 3-HB. The article describes one example of the contributions that synthetic organic chemists can make to important biological problems in an interdisciplinary framework.  相似文献   

6.
Repetitive treatment of the biopolymer P(3-HB) (molecular weight > 105 Dalton, storage or s-P(3-HB)), with lithium hexamethyl disilazanid (LHMDS) at ?70° in THF leads to a mixture of oligomers with increasingly sharp distribution around a 15-, 30-, and 45mer. Discrete fragments are also isolated when P(3-HB) is heated under reflux (89°) in neat Et3N. Linear oligo(3-HB) derivatives ( 3-7 ) containing up to 96 3-HB units are synthesized using an exponential segment-coupling strategy. These oligomers are used to calibrate size-exclusion chromatography columns for the analysis of oligo(3-HB) samples from the different sources. The linear oligo-(3-HB) derivatives also served as a model with respect to the physical properties of high molecular weight P(3-HB) and were investigated as such by transmission electron microscopy (TEM) and by small- and wide-angle X-ray scattering (SAXS and WAXS). The thicknesses of the lamellar crystallites (long periods) formed by the 8mer, 16mer, and 32mer, are ca. 26, 52, and 53 Å, respectively, indicating that the 32mer molecules are folded once, very tightly, into a ‘hair-pin’-type conformation. High-molecular-weight P(3-HB), which was crystallized in a similar way, also has a lamellar crystallite thickness of ca. 50–65 Å. Thus, the treatment of P(3-HB) with LHMDS at low temperature causes etching of the amorphous regions, an effect well known in polymer science for studying the regularity of chain folding. The ca. 50-Å packing within the tight folds of P(3-HB) is discussed in view of its possible function in ion transport through cell membranes.  相似文献   

7.
Reaction of the triolide 1 from (R)-3-hydroxybutanoic acid with Lawesson's reagent 5 leads to the mono-, di-, and trithio derivatives 6–8 which can be isolated in pure form (20–40% yields), and which have crystal structures very similar to the parent triolide 1 (Fig. 1). Similarly, pentolide 3 is converted to mixtures of various thio derivatives, three of which are separated ( 10–12 ) by HPLC and fully characterized. The X-ray structures of the mono- and of one of the dithiopentolides ( 10, 12 ) differ remarkably from each other (Fig. 3). Reduction of the thiotriolides 6–8 (NaBH4, R3SnH, Cl3SiH, Raney-Ni) gives 12-membered rings containing up to three ether groups (chiral crown ethers, 15, 17–19 ) in poor yields. The thiotriolides react spontaneously and in yields of up to 96% with ammonia, certain primary amines, and hydroxylamine to give imine and oxime derivatives with intact 12-membered-ring backbones ( 20, 22–24, 30 , see crystal structures in Figs. 4–7). The rigid structure of all the derivatives of triolide 1 puts the C?O, C?S, and C?NR O-, S-, and N-atoms in juxtaposition (a feature reminiscent of the side chains in the iron-binder enterobactin, Fig. 6). Imines containing PPh2 groups are prepared ( 30, 33, 35 ) from the thiotriolides and tested as chiral ligands for PdII-catalyzed 1,3-diphenyallylations (→ 37 , enantiomer ratio up to 77:23). The reactions described demonstrate that multiple reactions of the triolide 1 from (R)-3-hydroxybutanoic acid which proceed through tetrahedral intermediates are possible without ring opening – the skeleton is remarkably stable, and this might be exploited as a template for bringing up to three pendent substituents into close proximity to allow a study of their interactions and cooperative properties. Also, the di- and trithio derivatives 7 and 8 could be used for cross-linking in molecules containing primary NH2 groups.  相似文献   

8.
Chiral bicyclic α‐amino acid (R,R)‐Ab5,6=c with stereogenic centers at the γ‐position of fused‐ring junctions, and its enantiomer (S,S)‐Ab5,6=c, were synthesized. The CD spectra of (R,R)‐Ab5,6=c oligomers indicated that the (R,R)‐Ab5,6=c hexapeptide formed a mixture of right‐handed (P)‐ and left‐handed (M)‐310‐helices, while, in the (R,R)‐Ab5,6=c nonapeptide, a right‐handed (P)‐310‐helix slightly dominated over the (M)‐helix. X‐Ray crystallographic analyses of (S,S)‐tripeptide and (R,R)‐hexapeptide revealed that both the tripeptide and hexapeptide formed a mixture of (P)‐ and (M)‐310‐helices, respectively. These results indicated that the side‐chain environments around the stereogenic centers are particularly important to control the helical‐screw handedness of foldamers.  相似文献   

9.
Monodisperse and polydisperse oligomers and polymers of 3-hydroxybutanoic acid (3-HB) containing 8, 16, ca. 28, 32, ca. 60, 64, 96, and ca. 3000 monomer units were incorporated into palmitoyl-oleoyl-phosphatidyl choline (POPC) planar bilayers. At concentrations of 0.1–5% of oligo(3-HB), the resulting phospholipid bilayers showed typical single-channel behavior for Rb+ and Ba2+ ions, using the patch clamp technique. Thus, channel-forming activity of a pure polyester has been demonstrated for the first time (Figs. 1, 3, and 6). Single-channel activity depends upon the following structural parameters of the 3-HB derivatives: unprotected OH and COOH groups on the chain ends; chain length ⩾ 16 monomer units; no high-molecular-weight as in P(3-HB). The results are discussed in view of the Ca2+-specific channel formed with the P(3-HP)/Ca · PPi complex from genetically competent Escherichia coli and in view of the ubiquitous occurrence of low-molecular-weight P(3-HB) in prokaryotic and eukaryotic organisms. A simple model for the channel-causing structure is proposed, based on the proven tendency of oligo- and poly(3-HB) to form ca. 50-Å thick lamellar crystallites.  相似文献   

10.
Methods for syntheses of new polyfluorinated compounds, viz., silanes containing substituents CF3CF2CF2C(CF3)2(CH2)3 (RF) at the silicon atom and 1,3,5-tris(RF)-1,3,5-trimethylcyclotrisiloxane that can be used for the synthesis of fluorocontaining oligo- and polysiloxanes of different structure, were developed. The polymerization of cyclotrisiloxane in the presence of 1,3-divinyltetramethyldisiloxane gave linear oligomers, whose chain contain -(RF)Si(Me)O- units.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2133–2136, October, 2004.  相似文献   

11.
The solid-state CP/MAS 13C-NMR spectra (cross-polarization/magic-angle spinning 13C-NMR) of eight lower cyclic and one linear oligomers and several polymers of (R)-3-hydroxybutanoic acid (3-HB) are reported. The polymeric samples of different origin and molecular weight give remarkably similar and well resolved spectra, indicating considerable similarity in the conformations of the molecules and homegeneity in the solid-state environment. The crystalline cyclic oligomers 1 – 8 containing 3–9 units of 3-HB give very well resolved spectra. The number of nonequivalent positions in the solid state can be identified and is in accord with structures from X-ray diffraction where these were determined. The spectra of the oligolides become increasingly similar to those of the polymer as the ring size increases. This spectral evidence supports the view of a homogeneous and well defined conformation for the polymeric material (as proposed previously, based on other experiments).  相似文献   

12.
The temperature and concentration dependence of the previously reported formation of oligolides from (R)- or (S)-3-hydroxybutanoic acid under Yamaguchi's macrolactonization conditions (2,4,6-trichlorobenzoyl chloride/base) was studied. While the content of hexolide 2 in the product mixture is almost invariably ca. 35%, the amounts of pentolide 1 and of the larger rings strongly depend upon the temperature employed (Fig.1). Cyclic oligomers ( 5,6 ) are also obtained from 3-hydroxypentanoic acid. Enantiomerically pure β-butyrolactone can be used for the preparation of pento-, hexo-, and heptolide under Shanzer's macrolactonization conditions (tetra-oxadistannacyclodecane ‘template’). The X-ray crystal structures of the pentolide 1 and of two modifications (space groups C 2 and P 21) of the hexolide 2 were determined (Figs. 2–6 and Tables 1 and 5). No close contacts between substituent atoms and atoms in the rings or between ring atoms are observed in these structures. The hexolide C 2 modification is ‘just a large ring’, while the crystals of the P 21 modification contain folded rings the backbones of which resemble the seam of a tennis ball. A comparison of the torsion angles in the folded hexolide ring of the P 21 modification with those in the helical poly-(R)-3-hydroxybutanoate ( PHB ) suggests (Table 2) that the same interactions might be responsible for folding in the first and helix formation in the second case. Molecular modeling with force-field energy minimization of the tetrolide from four homochiral β-hydroxybutanoic acid units was undertaken, in order to find possible reasons for the fact that we failed to detect the tetrolide in the reaction mixtures. The calculated conformational energies (per monomer) for some of the tetrolide models (Figs. 7–9 and Tables 3 and 4) are not significantly higher than for the pentolide and hexolide crystal structures. We conclude that thermodynamic instability is an unlikely reason for the lack of tetrolide isolation. This result and failure to observe equilibration of pentolide 1 to a mixture of oligomers under the reaction conditions suggest that product distribution is governed by kinetic control.  相似文献   

13.
In connection with the proposed structure of a trans-membrane cellular ion channel consisting of a complex between poly[(R)-3-hydroxy butanoate] (P(3-HB)) and calcium polyphosphate, CaPPi (ca. 150 units each), which is supposed to contain s-cis-bonds or even more highly strained ester conformations, we have prepared and studied the properties of the cyclic dimer of 3-HB, the diolide 1 . All possible forms of 1 , the rac-, the meso-, and the enantiomerically pure (R,R)- and (S,S)-compounds were prepared, purified, and characterized. The synthesis (Scheme 1) started from dimethyl succinate with the key step being the Baeyer-Villiger oxidation of the rac- and meso-2,5-dimethylcyclohexane-1,4-diones 5 . The rac-diolide 1 was resolved by preparative chromatography on a Chiralcel OD column (Fig.1). The crystal structures of rac- 1 (Fig.3) and of meso- 1 (Fig.5) were determined by X-ray diffraction: the diolides 1 contain s-cis-ester bonds and an ester group with a conformation half way to the transition state of rotation (Fig.2). Strain energies for the diolides 1 of up to 17.8 kcal/mol are suggested. Accordingly, these compounds show reactivities similar to those of carboxylic-acid anhydrides or even acid chlorides. They cannot be chromatographed on silica gel, and they react with primary, secondary, and tertiary alcohols, and with amines to form derivatives of open chain 3-HB ‘dimers’, hydroxy acids 6 , esters 7 , and amides 8 (Scheme 2). The rate of acid-catalyzed ring opening of the diolides 1 with alcohols has been measured (Fig.6 and 7). From the results described, we conclude that it is unlikely for strained and reactive ester conformations to occur as part of ion channels through phospholipid bilayers of cells.  相似文献   

14.
The enantiomeric ligands (R,R)- and (S,S)-bis(o-anisylphenylphosphino)methane (R,R-14 and S,S-14, respectively) were used to prepare the C 3-point group clusters [Pd3(dppm*)3(CO)(O2CCF3)](CF3CO2) with dppm* = (R,R)-14 or (S,S)-14. The chiral structure of an enantiomeric clusters (with the chiral R,R-ligand (R,R)-14) was unambiguously demonstrated by both X-ray structure determination and by circular dichroism spectroscopy. This paper is dedicated to Professor C.N.R. Rao.  相似文献   

15.
Reactions of the triosmium clusters Os3(CO)11(NCMe) (1) and Os3(CO)10(NCMe)2 (2) with terpene derivatives,viz., (1S,3S,4R,6R)-3-(N,N-dimethylamino)-4-amino-3,7,7-trimethylbicyclo [4.1.0]heptane (3). (3bR,4aR)-(3,4,4-trimethyl-3b,4,4a,5-tetrahydrocyclopropa [3,4]cyclopenta[1,2-c]pyrazol-1-yl)acetic acid (4a), and (3bR,4aR)-3-(3,4,4-trimethyl-3b, 4,4a,5-tetrahydrocyclopropa[3,4]cyclopenta[1,2-c]pyrazol-1-yl)propionic acid (4b), were studied. A complex with the terminally coordinated ligand is formed in the first step of the reaction of diamine3 with cluster1. Heating of the resulting complex is accompanied by activation of one of the methyl groups of the ligand to form diastereomers with the bridging tricyclic dihydroimidazole ligand. One of these diastereomers was studied by X-ray diffraction analysis and its absolute configuration was established. Pyrazolycarboxylic acids react with cluster2 as simple organic acids and are coordinated as a bridge at the Os—Os bond through the carboxyl group. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1447–1454, August, 2000.  相似文献   

16.
Terminally blocked, homo‐peptide amides of (R,R)‐1‐amino‐2,3‐diphenylcyclopropane‐1‐carboxylic acid (c3diPhe), a chiral member of the family of Cα‐tetrasubstituted α‐amino acids, from the dimer to the tetramer, and diastereomeric co‐oligopeptides of (R,R)‐ or (S,S)‐c3diPhe with (S)‐alanine residues to the trimer level were prepared in solution and fully characterized. The synthetic effort was extended to terminally protected co‐oligopeptide esters to the hexamer, where c3diPhe residues are combined with achiral α‐aminoisobutyric acid residues. The preferred conformations of the peptides were assessed in solution by FT‐IR absorption, NMR, and CD techniques, and for seven oligomers in the crystal state (by X‐ray diffraction) as well. This study clearly indicates that c3diPhe, a sterically demanding cyclopropane analogue of phenylalanine, tends to fold peptides into β‐turn and 310‐helix conformations. However, when c3diPhe is in combination with other chiral residues, the conformation preferred by the resulting peptides is also dictated by the chiral sequence of the amino acid building blocks. The (S,S)‐enantiomer of this α‐amino acid, unusually lacking asymmetry in the main chain, strongly favors the left‐handedness of the turn/helical peptides formed.  相似文献   

17.
While the chain conformation of poly‐ and oligo[(R)‐3‐hydroxybutanoate] (PHB, OHB) is known to be 21‐ and 31‐helical in stretched fibers and in the crystalline state, respectively (Fig. 2), the structure in solution is unknown. To be able to determine the NMR‐solution structure, specifically labeled linear oligomers have been prepared: a 16‐mer consisting of alternating pairs of fully 13C‐labeled and non‐labeled residues ( 1 ) and a 20‐mer containing an O13CH(13CH2D)‐13CHDSi13CO residue in position 9 (from the O‐terminus) and a fully 13C‐labeled residue in position 12 ( 2 ), both with (t‐Bu)Ph2Si protection at the O‐ and Bn protection at the C‐terminus. The labeled (R)‐3‐hydroxybutanoic acid building blocks were prepared by Noyori hydrogenation of the ethyl ester of fully 13C‐labeled acetoacetic acid, and the D‐atoms were incorporated by D2/Pd‐C reduction of a previously reported dibromo‐1,3‐dioxinone 8 (Scheme 1). The oligomers were obtained by a series of fragment couplings (Schemes 2 and 3). 600‐MHz NMR COSY, HSQC, ROESY, and cross‐correlated relaxation measurements (Figs. 46, 9, and 12, and Tables 13) at different temperatures and interpretations thereof led to assignments of all resonances, including those from the diastereotopic C(2)H2 protons, and to determination of the conformationally averaged dihedral angles ϕ2 and ϕ3 (Figs. 2, 7, and 8) in the chain of the oligoester. The conclusions are: all but five or six terminal residues adopt the same conformation; the 21 helix is not the predominant secondary structure; the structure of the HB chain is averaged, even at –30°. Our investigation confirms the high flexibility of the polyester chain, a property that has been deduced previously from biological studies of PHB in membranes, in ion channels, and as appendage of proteins.  相似文献   

18.
Structural prerequisites for the stability of the 31 helix of β-peptides can be defined from inspection of models (Figs. 1 and 2): lateral non-H-substituents in 2- and 3-position on the 3-amino-acid residues of the helix are allowed, axial ones are forbidden. To be able to test this prediction, we synthesized a series of heptapeptide derivatives Boc-(β-HVal-β-HAla-β-HLeu-Xaa-β-HVal-β-HAla-β-HLeu)-OMe 13–22 (Xaa = α- or β-amino-acid residue) and a β-depsipeptide 25 with a central (S)-3-hydroxybutanoic-acid residue (Xaa = –OCH(Me)CH2C(O)–) (Schemes 1 3). Detailed NMR analysis (DQF-COSY, HSQC, HMBC, ROESY, and TOCSY experiments) in methanol solution of the β-hexapeptide H(-β-HVal-β-HAla-β-HLeu)2-OH ( 1 ) and of the β-heptapeptide H-β-HVal-β-HAla-β-HLeu-(S,S)-β-HAla(αMe)-β-HVal-β-HAla- β-HLeu-OH ( 22 ), with a central (2S,3S)-3-amino-2-methylbutanoic-acid residue, confirm the helical structure of such β-peptides (previously discovered in pyridine solution) (Fig.3 and Tables 1–5). The CD spectra of helical β-peptides, the residues of which were prepared by (retentive) Arndt-Eistert homologation of the (S)- or L -α-amino acids, show a trough at 215 nm. Thus, this characteristic pattern of the CD spectra was taken as an indicator for the presence of a helix in methanol solutions of compounds 13–22 and 25 (including partially and fully deprotected forms) (Figs.4–6). The results fully confirm predicted structural effects: incorporation of a single ‘wrong’ residue ((R)-β-HAla, β-HAib, (R,S)-β-HAla(α Me), or N-Me-β-HAla) in the central position of the β-heptapeptide derivatives A (see 17, 18, 20 , or 21 , resp.) causes the CD minimum to disappear. Also, the β-heptadepsipetide 25 (missing H-bond) and the β-heptapeptide analogs with a single α-amino-acid moiety in the middle ( 13 and 14 ) are not helical, according to this analysis. An interesting case is the heptapeptide 15 with the central achiral, unsubstituted 3-aminopropanoic-acid moiety: helical conformation appears to depend upon the presence or absence of terminal protection and upon the solvent (MeOH vs. MeOH/H2O).  相似文献   

19.
利用三有机锡氢氧化物和手性配体(4R)-3-[[(2S)-5-氧-2-吡咯烷基]羰基]-4-噻唑烷甲酸(HL)反应合成了3个三有机锡(4R)-3-[[(2S)-5-氧-2-吡咯烷基]羰基]-4-噻唑烷甲酸酯R3SnL[1,R=c-C6H11a),C6H5b),C6H5C(CH32CH2c)],通过元素分析、IR、1H NMR和X-射线单晶衍射表征了其结构。化合物1a属正交晶系,P212121空间群;化合物1b属单斜晶系,P21空间群。二者均为由羧基氧和内酰胺羰基氧桥联配位形成的右螺旋链状有机锡配位聚合物,锡原子具有五配位[SnC3O2]畸变三角双锥构型。化合物1a1b对体外2种人癌细胞Colo205和Bcap37增殖均有强的抑制作用,其活性为1b >1a。  相似文献   

20.
Several oligomeric derivatives 1–5 of (R)-3-hydroxybutanoic acid and a cyclic trimer of (R)-3-hydroxypentanoic acid ( 6 ) were used as ionophores to transport potassium picrate across a bulk liquid CH2Cl2 membrane. Using the cyclic trimer 1 and an oligomer mixture of (R)-3-hydroxybutanoic acid, 5 (ca. 28-mer), for the transport experiments, the alkali-metal ions from Li+ to Cs+ and the alkaline-earth-metal ions from Mg2+ to Ba2+ were also shown to be transported through the organic phase. Although a pronounced enhancement of the transport rates was observed in the presence of 3-hydroxyalkanoate oligomers, no special selectivity for one ion was detected. The ionophore properties of the investigated oligomers and oligolides derived from 3-hydroxybutanoic acid are compatible with the alleged role of oligo(3-hydroxybutanoate) (c-PHB; ca. 120-mer) as component of ion channels through cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号