首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We have synthesized novel σ–π conjugated polymers with N,N‐bis(p‐ethynylphenyl)‐N‐(p‐tolyl)amine as the π‐unit. The electroluminescent devices, with a double‐layer system composed of Alq and the present polymers as the emitting‐electron‐transporting and hole‐transporting layers respectively, emit green electroluminescence with a maximum intensity of 760 cd m?2. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
The π-bond order–bond length relationship is reintroduced to the literature and extended to heteronuclear bonds by presenting graphs derived solely by theoretical methods. π-bond order and overlap population results for carbon–carbon, carbon–nitrogen, and carbon–oxygen bonds obtained from ab initio STO -3G calculations using theoretically-optimized geometries are reported for a series of pteridines and for a wide range of small organic molecules. The order–length correlation graphs are used in predicting the “intrinsic” single bond lengths for sp2sp2 and spsp hybridized C? C, C? N, and C? O bonds, and in evaluating the relative importance of hybridization, π-electron delocalization and bond polarization effects in causing bond shortening in conjugated and hyperconjugated molecules. The calculated value of the π-bond order for a given bond in a molecule is shown to be relatively insensitive to moderate geometry changes: Hence, a use for the correlation graphs in geometry prediction is suggested. Some results for the extended 4-21G basis set are also presented.  相似文献   

3.
The ESR spectra of the radical anions of several trimethylsilyl substituted polyenes, benzenes and naphthalenes have been recorded; most of them are surprisingly stable under the conditions of measurement. Accurate values could be obtained for the splitting parameters – not only of the protons, but also of the 29Si isotopes in natural abundance. The coupling constants of the 29Si nuclei in trimethylsilyl substituents are of the same order of magnitude as the corresponding values of the protons attached to centers of comparable π-spin population. The results indicate some Si ← Cπ delocalization.  相似文献   

4.
We have synthesized novel σπ conjugated polymers with an alternating organosilanylene and π‐electron system, intending to utilize them for hole‐transporting materials of electroluminescent (EL) devices. 3,6‐Di(lithioethynyl)carbazoles were co‐polymerized with organodichlorosilanes to give the corresponding polymers with molecular weights of MW = 2000–5000. Another type of polymer with a thienylene unit was also synthesized by the nickel‐catalyzed reaction of the di‐Grignard reagent of 1,2‐bis[2‐(5‐bromothienyl)]tetraethyldisilane with 3,6‐dibromocarbazole, the molecular weight being Mn = 3100. The EL devices with a double‐layer system composed of tris(8‐quinolinolato)aluminum(III) and the present polymers as the emitting‐electron‐transporting and hole‐transporting layers, respectively, emit green EL with a maximum intensity of the order of 103 cd m?2. Of these, the device with the thienylene–carbazole polymers exhibited the highest luminance of 1480 cd m?2. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Species with 2‐center, 3‐electron (2c/3e?) σ bonds are of interest owing to their fascinating electronic structures and potential for interesting reactivity patterns. Report here is the synthesis and characterization of a pair of zerovalent (d9) trigonal pyramidal Rh and Ir complexes that feature 2c/3e? σ bonds to the Si atom of a tripodal tris(phosphine)silatrane ligand. X‐ray diffraction, continuous wave and pulse electron paramagnetic resonance, density‐functional theory calculations, and reactivity studies have been used to characterize these electronically distinctive compounds. The data available highlight a 2c/3e? bonding framework with a σ*‐SOMO of metal 4‐ or 5dz2 parentage that is partially stabilized by significant mixing with Si (3pz) and metal (5‐ or 6pz) orbitals. Metal‐ligand covalency thus buffers the expected destabilization of transition‐metal (TM)‐silyl σ*‐orbitals by d–p mixing, affording well‐characterized examples of TM–main group, and hence polar, 2c/3e? σ “half‐bonds”.  相似文献   

6.
Species with 2‐center, 3‐electron (2c/3e?) σ bonds are of interest owing to their fascinating electronic structures and potential for interesting reactivity patterns. Report here is the synthesis and characterization of a pair of zerovalent (d9) trigonal pyramidal Rh and Ir complexes that feature 2c/3e? σ bonds to the Si atom of a tripodal tris(phosphine)silatrane ligand. X‐ray diffraction, continuous wave and pulse electron paramagnetic resonance, density‐functional theory calculations, and reactivity studies have been used to characterize these electronically distinctive compounds. The data available highlight a 2c/3e? bonding framework with a σ*‐SOMO of metal 4‐ or 5dz2 parentage that is partially stabilized by significant mixing with Si (3pz) and metal (5‐ or 6pz) orbitals. Metal‐ligand covalency thus buffers the expected destabilization of transition‐metal (TM)‐silyl σ*‐orbitals by d–p mixing, affording well‐characterized examples of TM–main group, and hence polar, 2c/3e? σ “half‐bonds”.  相似文献   

7.
CBS-Q and G3 methods were used to generate a large number of reliable Si--H, P---H and S--H bond dissociation energies (BDEs) for the first time. It was found that the Si--H BDE displayed dramatically different substituent effects compared with the C--H BDE. On the other hand, the P---H and S--H BDE exhibited patterns of substituent effects similar to those of the N--H and O--H BDE. Further analysis indicated that increasing the positive charge on Si of XSiH3 would strengthen the Si--H bond whereas increasing the positive charge on P and S of XPH2 and XSH would weaken the P---H and S--H bonds. Meanwhile, increasing the positive charge on Si of XSiH2^+ stabilized the silyl radical whereas increasing the positive charge on P and S in XPH" and XS* destabilized P- and S-centered radicals. These behaviors could be reasonalized by the fact that Si is less electronegative than H while P and S are not. Finally, it was demonstrated that the spin-delocalization effect was valid for the Si-, P- and S-centered radicals.  相似文献   

8.
A π‐conjugated twelve‐porphyrin tube is synthesized in 32 % yield by a template‐directed coupling reaction that joins together six porphyrin dimers, forming twelve new C? C bonds. The nanotube has two bound templates, enclosing an internal volume of approximately 4.5 nm3. Its UV/Vis/NIR absorption and fluorescence spectra resemble those of a previously reported six‐porphyrin ring, but are red‐shifted by approximately 300 cm?1, reflecting increased conjugation. Ultrafast fluorescence spectroscopy demonstrates extensive excited‐state delocalization. Transfer of electronic excitation from an initially formed state polarized in the direction of the nanotube axis (z axis) to an excited state polarized in the xy plane occurs within 200 fs, resulting in a negative fluorescence anisotropy on excitation at 742 nm.  相似文献   

9.
Hydride abstraction from the gold (disilyl)ethylacetylide complex [( P )Au{η1‐C?CSi(Me)2CH2CH2SiMe2H}] ( P =P(tBu)2o‐biphenyl) with triphenylcarbenium tetrakis(pentafluorophenyl)borate at ?20 °C formed the cationic gold (β,β‐disilyl)vinylidene complex [( P )Au?C?CSi(Me)2CH2CH2Si (Me)2]+B(C6F5)4? with ≥90 % selectivity. 29Si NMR analysis of this complex pointed to delocalization of positive charge onto both the β‐silyl groups and the ( P )Au fragment. The C1 and C2 carbon atoms of the vinylidene complex underwent facile interconversion (ΔG=9.7 kcal mol?1), presumably via the gold π‐disilacyclohexyne intermediate [( P )Au{η2‐C?CSi(Me)2CH2CH2Si (Me)2}]+B(C6F5)4?.  相似文献   

10.
A series of low bandgap conjugated polymers consisting of benzothiadiazole alternating with dithienothiophene (DTT) or dithienopyrrole (DTP) unit with or without 3‐alkylthiophene bridge have been synthesized. Effect of the fused rings and 3‐alkylthiophene bridge on the thermal, optical, electrochemical, charge transport, and photovoltaic properties of these polymers have been investigated. These polymers show broad absorption extending from 300 to 1000 nm with optical bandgaps as low as 1.2 eV; the details of which can be varied either by incorporating 3‐alkylthiophene bridge or by replacing DTT with DTP. The LUMO levels (?2.9 to ?3.3 eV) are essentially unaffected by the specific choice of donor moiety, whereas the HOMO levels (?4.6 to ?5.6 eV) are more sensitive to the choice of donor. The DTT and DTP polymers with 3‐alkylthiophene bridge were found to exhibit hole mobilities of 8 × 10?5 and 3 × 10?2 cm2 V?1 s?1, respectively, in top‐contact organic field‐effect transistors. Power conversion efficiencies in the range 0.17–0.43% were obtained under simulated AM 1.5, 100 mW cm?2 irradiation for polymer solar cells using the DTT and DTP‐based polymers with 3‐alkylthiophene bridge as donor and fullerene derivatives as acceptor. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5498–5508, 2009  相似文献   

11.
Perfluoro-2-alkynenitriles can be polymerized into soluble polymers at low temperatures by π-bis(benzene)chromium(O) in benzene/pyridine (10:1) solution. The degree of polymerization is 7.4 for perfluoro-2-butynenitrile, 6.5 for perfluoro-2-pentynenitrile, and 11 for perfluoro-2-hexynenitrile. These polymers were examined by UV and IR spectra. Their thermal stability and the electrical conductivity of nondoped polymers were also studied. The conductivities of polyperfluoro-2-butynenitrile(PPFBN) and polyperfluoro-2-pentynenitrile are found to be 4.8 × 10?8 and 6.6 × 10?8Ω?1 cm?1, respectively.  相似文献   

12.
Car–Parrinello molecular dynamics (CP–MD) simulations are performed at high temperature and pressure to investigate chemical interactions and transport processes at the α‐quartz–water interface. The model system initially consists of a periodically repeated quartz slab with O‐terminated and Si‐terminated (1000) surfaces sandwiching a film of liquid water. At a temperature of 1000 K and a pressure of 0.3 GPa, dissociation of H2O molecules into H+ and OH? is observed at the Si‐terminated surface. The OH? fragments immediately bind chemically to the Si‐terminated surface while Grotthus‐type proton diffusion through the water film leads to protonation of the O‐terminated surface. Eventually, both surfaces are fully hydroxylated and no further chemical reactions are observed. Due to the confinement between the two hydroxylated quartz surfaces, water diffusion is reduced by about one third in comparison to bulk water. Diffusion properties of dissolved SiO2 present as Si(OH)4 in the water film are also studied. We do not observe strong interactions between the hydroxylated quartz surfaces and the Si(OH)4 molecule as would have been indicated by a substantial lowering of the Si(OH)4 diffusion coefficient along the surface. No spontaneous dissolution of quartz is observed. To study the mechanism of dissolution, constrained CP–MD simulations are done. The associated free energy profile is calculated by thermodynamic integration along the reaction coordinate. Dissolution is a stepwise process in which two Si? O bonds are successively broken. Each bond breaking between a silicon atom at the surface and an oxygen atom belonging to the quartz lattice is accompanied by the formation of a new Si? O bond between the silicon atom and a water molecule. The latter loses a proton in the process which eventually leads to protonation of the oxygen atom in the cleaved quartz Si? O bond. The final solute species is Si(OH)4.  相似文献   

13.
The radical anion of octa‐tert‐butyloctasilacubane was generated and isolated. The EPR spectrum showed the satellites due to the tertiary 13C nuclei of the eight tert‐butyl groups. The X‐ray crystallographic analysis showed that the Si? Si bonds are shortened and the Si? C bonds are elongated compared with those of octa‐tert‐butyloctasilacubane. These results are well explained by the distribution of an unpaired electron in the singly occupied molecular orbital (SOMO).  相似文献   

14.
Hydrogen bonding of uracil with water in excited n → π* states has been investigated by means of ab initio SCF -CI calculations on uracil and water–uracil complexes. Two low-energy excited states arise from n → π* transitions in uracil. The first is due to excitation of the C4? O group, while the second is associated with excitation of the C2? O group. In the first n → π* state, hydrogen bonds at O4 are broken, so that the open water–uracil dimer at O4 dissociates. The “wobble” dimer, in which a water molecule is essentially free to move between its position in an open structure at N3? H and a cyclic structure at N3? H and O4 in the ground state, collapses to a different “wobble” dimer at N3? H and O2 in the excited state. The third dimer, a “wobble” dimer at N1? H and O2, remains intact, but is destabilized relative to the ground state. Although hydrogen bonds at O2 are broken in the second n → π* state, the three water–uracil dimers remain bound. The “wobble” dimer at N1? H and O2 changes to an excited open dimer at N1? H. The “wobble” dimer at N3? H and O4 remains intact, and the open dimer at O4 is further stabilized upon excitation. Dimer blue shifts of n → π* bands are nearly additive in 2:1 and 3:1 water:uracil structures. The fates of the three 2:1 water:uracil trimers and the 3:1 water:uracil tetramer in the first and second n → π* states are determined by the fates of the corresponding excited dimers in these states.  相似文献   

15.
Facile oxygenation of the acyclic amido‐chlorosilylene bis(N‐heterocyclic carbene) Ni0 complex [{N(Dipp)(SiMe3)ClSi:→Ni(NHC)2] ( 1 ; Dipp=2,6‐iPr2C6H4; N‐heterocyclic carbene=C[(iPr)NC(Me)]2) with N2O furnishes the first Si‐metalated iminosilane, [DippN=Si(OSiMe3)Ni(Cl)(NHC)2] ( 3 ), in a rearrangement cascade. Markedly, the formation of 3 proceeds via the silanone (Si=O)–Ni π‐complex 2 as the initial product, which was predicted by DFT calculations and observed spectroscopically. The Si=O and Si=N moieties in 2 and 3 , respectively, show remarkable hydroboration reactivity towards H−B bonds of boranes, in the former case corroborating the proposed formation of a (Si=O)–Ni π‐complex at low temperature.  相似文献   

16.
In this study, we report the synthesis of π‐conjugated network polymers including unique fluorescent units via palladium‐catalyzed direct (C? H) arylation polycondensation of 1,2,4,5‐tetrafluorobenzene with tetrabromoarenes. The obtained polymers, including tetraphenylethene (TPE) or pyrene (PYR) units, had microporous structures with the specific Brunauer–Emmett–Teller (BET) surface areas at 508 and 824 m2 g?1, respectively. These polymers possessed narrow pore distributions (<15 nm). These analyses supported that π‐conjugated microporous polymers (CMPs) were synthesized by the direct arylation. Similar to the result of BET surface areas, carbon capture capacity of CMP based on PYR unit was higher than that of CMP based on TPE unit. Because the nitrogen capture capacity of these CMPs was low (≈ 0), selectivity of carbon dioxide adsorption was very high. TPE is a typical aggregation‐induced emission unit but PYR is an aggregation‐caused quenching (ACQ) molecule. The incorporation of TPE unit into the microporous polymer gave green‐colored fluorescence (Φ = 0.12). The polymer including PYR units also showed the green‐colored fluorescence (Φ = 0.05) even though the ACQ property. These synthesized CMPs exhibited characteristic solvatofluorochromism. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3862–3867  相似文献   

17.
Two novel porphyrin‐based D‐A conjugated copolymers, PFTTQP and PBDTTTQP , consisting of accepting quinoxalino[2,3‐b′]porphyrin unit and donating fluorene or benzo[1,2‐b:4,5‐b′]dithiophene unit, were synthesized, respectively via a Pd‐catalyzed Stille‐coupling method. The quinoxalino[2,3‐b′]porphyrin, an edge‐fused porphyrin monomer, was used as a building block of D‐A copolymers, rather than the simple porphyrin unit in conventional porphyrin‐based photovoltaic polymers reported in literature, to enhance the coplanarity and to extend the π‐conjugated system of polymer main chains, and consequently to facilitate the intramolecular charge transfer (ICT). The thermal stability, optical, and electrochemical properties as well as the photovoltaic characteristics of the two polymers were systematically investigated. Both the polymers showed high hole mobility, reaching 4.3 × 10?4 cm2 V?1 s?1 for PFTTQP and 2.0 × 10?4 cm2 V?1 s?1 for PBDTTTQP . Polymer solar cells (PSCs) made from PFTTQP and PBDTTTQP demonstrated power conversion efficiencies (PCEs) of 2.39% and 1.53%, both of which are among the highest PCE values in the PSCs based on porphyrin‐based conjugated polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013  相似文献   

18.
A previously published scheme for the calculation of partial atomic charges has been extended to include silicon, and has been parameterized for a range of Si? X bonds (X?C,H,O,F,Cl,Br). For the silicon–halogen and silicon–oxygen bonds, a comparison is made between charges calculated with and without the inclusion of π-bonding. An extensive data set consisting of experimental geometries and dipole moments for the silicon compounds considered is presented and this leads to the selection of standard Si? X bond lengths. The calculated dipole moments for the above compounds are in good agreement with those obtained experimentally only when the π charges are included. A comparison has also been made between the partial charges from this scheme and those obtained from computational methods using the Mulliken population analysis. There is considerable disagreement between the methods. Finally, the implications of the charges and structural data are considered in terms of application to zeolite systems.  相似文献   

19.
Modern supramolecular chemistry is overwhelmingly based on non‐covalent interactions involving organic architectures. However, the question of what happens when you depart from this area to the supramolecular chemistry of structures based on non‐carbon frameworks remains largely unanswered, and is an area that potentially provides new directions in molecular activation, host–guest chemistry, and biomimetic chemistry. In this work, we explore the unusual host–guest chemistry of the pentameric macrocycle [{P(μ‐NtBu}2NH]5 with a range of anionic and neutral guests. The polar coordination site of this host promotes new modes of guest encapsulation via hydrogen bonding with the π systems of the unsaturated C≡C and C≡N bonds of acetylenes and nitriles as well as with the PCO? anion. Halide guests can be kinetically locked within the structure by oxidation of the phosphorus periphery by oxidation to PV. Our study underscores the future promise of p‐block macrocyclic chemistry.  相似文献   

20.
Localized orbitals have recently been employed in large ab initio calculations, but their use has generally been restricted to ground‐state problems. In this work, we analyze the molecular orbitals of the excited states, optimized with a recently proposed local procedure. This method produces local orbitals of the CAS–SCF type, which permits its application to the study of excited states. In particular, we focus on the π→π* triplet excited state in polyenes, calculated using a 2/2 CAS space which includes two electrons in one π and one π* orbitals. In small polyenes, these two singly occupied active orbitals are delocalized all along the molecule. The extent of the delocalization is analyzed by studying polyenes of increasing size. Different polyenes have been studied, going from C14H16 to the C70H72 polyene. The relation of the π→π* excitation with the cation and anion systems is also discussed. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号