首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the 1,2,4,7-anti-tetramethylbicyclo[2.2.1]heptan-2-yl cation ( 1 ) was redetermined by X-ray crystal structure analysis of its Sb2F11 salt at 110 K (P21/c, R1 = 5.76%). The most important structural features of 1 are: C(1)? C(2) = 1.409(9), C(1)? C(6) = 1.710(8), and C(2)…C(6) = 2.113(9) Å and C(2)? C(1)? C(6) = 84.7(4)°. These results agree with those obtained earlier by other methods for the rapidly equilibrating, partially s?-delocalized 1,2-dimethylbicyclo[2.2.1]heptan-2-yl cation ( 2 ). The detailed experimental procedure for the preparation of crystalline 1 · Sb2F11 and the crystal selection and mounting are described.  相似文献   

2.
The Crystal Structures of (DDI)2[Sb2F6O] and (DDI)2[Sb3F7O2] (DDI = 1,3‐Diisopropyl‐4,5‐dimethylimidazolium) — a Contribution to the Hydrolysis of SbF3 [1] The salts (DDI)2[Sb2F6O] ( 2 ) and (DDI)2[Sb3F7O2] ( 3 ), (DDI = 1,3‐diisopropyl‐4,5‐dimethylimidazolium) are obtained by hydrolysis of C11H20N2SbF3 ( 1 ). The anion [Sb2F6O]2? consists of two SbF2 fragments linked by a symmetrical oxygen bridge and two unsymmetrical fluorine bridges to form a distored ψ‐octahedral coordination sphere at the antimony atoms. In [Sb3F7O2]2?, two SbF2 units are linked by a symmetrical fluorine bridge, while the third antimony atom is connected with each SbF2 fragment by a symmetrical oxygen and an unsymmetrical fluorine bridge. The antimony atoms adopt the centres of strongly distored ψ‐polyhedra.  相似文献   

3.
Synthesis, IR Spectrum, and Crystal Structure of Sb12O18(OH)2Cl22 · 2CH2Cl2 The title compound has been prepared by the reaction of Sb5O7Cl11 with dichloromethane at 20°C, forming colourless, moisture sensitive crystals. Sb12O18(OH)2Cl22 · 2CH2Cl2 crystallizes monoclinically in the space group P21/n with two formula units per unit cell. Structure solution with 2696 unique observed reflections, R = 0.042. Lattice dimensions at 19°C: a = 1350.2, b = 1466.7, c = 1392.9 pm, b? = 97.925°. The distorted octahedrally coordinated antimony atoms, bridged by oxygen atoms, exhibit a molecular array which may be seen as a fragment of the rutile type structure, isolated by terminal chloride ligands. The solvate molecule is associated by a hydrogen bridge OH···Cl.  相似文献   

4.
Deep blue‐violet colored powder samples of Ag2ZnZr2F14 were synthesized by heating Zn(NO3)2·4H2O, Ag and ZrOCl2·8H2O at 300 °C under fluorine atmosphere. The crystal structure of Ag2ZnZr2F14 was refined from X‐ray powder diffraction data using the Rietveld method (C2/m, a = 9.0206(1) Å, b = 6.6373(1) Å, c = 9.0563(1) Å, β = 90.44(1)°, Z = 2). The structure is derived from the isotypic Ag3Zr2F14 by replacing only one of the two crystallographically different Ag2+ ions with Zn2+ ions, thus leading to discrete Ag2F7 dimers. These dimers are connected via nearly linear Ag–F···F–Ag bridges with short F···F distances of 2.33 Å to form two‐legged ladders. Magnetic susceptibility measurements and density functional calculations show that the two Ag2+ ions in each Ag2F7 dimer are strongly coupled antiferromagnetically.  相似文献   

5.
Na2Sb5F9O3(NCS)2, a new complex, has been synthesized from NaSCN and SbF3 aqueous solutions and studied by chemical, X-ray diffraction, and thermal analyses and IR, 121,123Sb NQR, and 19F NMR spectroscopy. Its layered structure (triclinic symmetry system, a = 6.9998(1) Å, b = 9.4180(1) Å, c = 13.1094(2) Å, α = 74.815(1)°, β = 78.188(1)°, γ = 82.779(1)°, Z = 2, space group P $\bar 1$ ) is built of Na+ cations and [Sb10F18O6(NCS)4]4? decanuclear complex anions that consist of two [Sb5F9O3(NCS)2]2? pentanuclear complex anions linked by two weak Sb-F ionic bonds (2.529(2) Å). Decanuclear complex anions are linked into layers by secondary Sb…F bonds and Na-F bonds. Van der Waals interactions link these layers into a framework. The complex is stable up to 200°C.  相似文献   

6.
The ammoniates [K(18‐crown‐6)(NH3)2]3Sb11 · 5.5NH3 ( 1 ) and [Cs(18‐crown‐6)]2CsAs11 · 8NH3 ( 2 ) (18‐crown‐6 = 18C6: 1,4,7,10,13,16‐Hexaoxacyclooctadecan) were synthesized by either the reaction of K3Sb7 with SbPh3 in liquid ammonia or by extraction of Cs3As11 with liquid ammonia. Single crystals were isolated and characterized by low temperature X‐ray structure analysis. [K(18‐crown‐6)(NH3)2]3Sb11 · 5.5NH3 crystallizes in the space group with a = 13.31(2) Å, b = 15.161(2) Å, c = 22.521(3) Å, α = 99.23(1)°, β = 100.99(1)° and γ = 105.03(1)°. [Cs(18‐crown‐6)]2CsAs11 · 8NH3 crystallizes in the monoclinic space group C2/c with a = 20.009(3) Å, b = 17.024(1) Å, c = 19.838(2) Å and β = 119.732(9)°. While 1 contains isolated [Sb11]3? anions and [K(18‐crown‐6)(NH3)2]+ complexes, cesium–arsenic contacts lead to one–dimensionally infinite chains in 2 .  相似文献   

7.
Li2CrO4 · 2H2O: Unusual Hydrogen Bridge Bonding and Coordination for Oxygen of the Anions CrO42? The crystal structure of Li2CrO4 · 2H2O was solved including the positions of hydrogen by X-ray methods. Li2CrO4 · 2H2O: P212121, Z = 4, a = 5.503(1) Å, b = 7.733(2) Å, c = 11.987(2) Å, Z(Fo) with (Fo)2 ? 3σ(Fo)2 = 2284, Z (parameter) = 99, R/Rw = 0.025/0.029 LiCrO4 · 2H2O contains a locally bordered hydrogen bridge bonding system between water molecules as donors and two O of CrO42? as acceptors. This system connects anions in the direction [010]. It is noticeable that oxygen ligands of the anion CrO42? have strongly differing coordination.  相似文献   

8.
The ammoniate [K17(Sb8)2(NH2)] · 17.5NH3 was synthesized by reduction of antimony with potassium in liquid ammonia. Single crystals were isolated and characterized by low temperature X‐ray structure analysis. [K17(Sb8)2(NH2)] · 17.5NH3 crystallizes in the space group P21/c (No. 14) with a = 12.976(1) Å, b = 24.536(1) Å, c = 22.858(1) Å and β = 99.17(1)°. The ammoniate contains crown‐shaped [Sb8]8? Zintl anions which are analogous to S8 rings. The presence of amide NH2? as an additional anion is deduced from coordination observations and the close similarity of structural features to the structure of KNH2.  相似文献   

9.
Anionic Antimony(III) Fluoro Complexes with protonated Azacrownethers as Counterions. Crystal Structures and Mößbauer Spectra of [H2cyclam]2[Sb4F16] · 2H2O, [H4cyclam][Sb2F10] · 2 HF, and [H4(tetramethyl)cyclam]2[Sb4F15][HF2][F]4 (cyclam = 1,4,7,11-Tetraazacyclotetradecane) The title compounds are formed by reaction of SbF3 with the respective azacrownether. [H2cyclam]2[Sb4F16] · 2 H2O contains tetrameric anions which weakly associate to chains. The [H2cyclam]2+ ions possess an unusual conformation due to intramolecular hydrogen bonds. [H4cyclam][Sb2F10] · 2HF contains the dimeric hitherto unknown [Sb2F10]4? ion; two HF molecules are attached to it by hydrogen bonds. The structure of [H4(tetramethyl)cyclam]2[Sb4F15][HF2][F]4 is made up of the two dimensional polymeric [HSb4F17]4? anion. The tetra-protonated tetramethylcyclam ions form host-guest complexes with fluoride ions.  相似文献   

10.
The X-ray structure determination of [NH2)2CO]2 · Sb2F4O shows the existence of linked units urea-Sb2F4O which show the Sb2F4O entity, not yet known. Crystal structure was solved with a singlecrystal X-ray diffraction study (the final R value is 0.046). The Sb2F4O unit is composed of a symmetric and short SbOSb bridge, and of four fluorine atoms, two being bonded to each antimony atom and situated in trans position relative to the SbOSb bridge. The bridge bond strength is assigned to a pπdπ overlap.  相似文献   

11.
Phosphorane Iminato Complexes of Antimony. The Crystal Structures of [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN and [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN The title compounds are formed by reaction of antimony pentachloride in acetonitrile solution with the phosphorane iminato complexes SbCl2(NPMe3) and SbCl2(NPPh3), respectively, which themselves are synthesized by reaction of antimony trichloride with Me3SiNPR3 (R = Me, Ph). The complexionic compounds are characterized by 121Sb Mössbauer spectroscopy and by crystal structure determinations. [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN: Space group P41, Z = 4, 3 698 observed unique reflections, R = 0.022. Lattice dimensions at ?60°C: a = b = 1 056.0(1), c = 2 709.6(2) pm. The structure consists of SbCl6? ions and cations [Sb2Cl5(NPMe3)2(CH3CN)]+, in which one SbIII atom and one SbV atom are bridged by the N atoms of the phosphorane iminato ligands. [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN: Space group P1 , Z = 2, 5 958 observed unique reflections, R = 0.033. Lattice dimensions at ?60°C: a = 989.4(11), b = 1 273(1), c = 1 396(1) pm, α = 78.33(7), β = 77.27(8)°, γ = 86.62(8)°. The structure consists of SbCl6? ions and centrosymmetric cations [SbCl(NPPh3)(CH3CN)2]22+, in which the antimony atoms are bridged by the N atoms of the phosphorane iminato ligands.  相似文献   

12.
Compounds in the Systems Potassium(Rubidium)/Gold/Antimony: K3Au3Sb2, Rb3Au3Sb2, and K1,74Rb0,26RbAu3Sb2 Brittle, silver coloured single crystals of K3Au3Sb2, Rb3Au3Sb2 and K1,74Rb0,26RbAu3Sb2 were obtainded by reaction of the alkali metal azides (KN3, RbN3) with gold and antimon powder at 550°C. The structures of the isotypic compounds (R3 m, Z = 3) were determined by X-ray single-crystal diffractometer data: K3Au3Sb2, a = 6,198(2) Å, c = 21,520(5) Å, R/Rw (w = 1) = 0,046/0,058, Z(F) ? 3σ(F) = 175, Z(Var.) = 14; Rb3Au3Sb2, a = 6,443(3), c = 21,69(2), R/Rw (w = 1) = 0,059/0,082, Z(F) ? 3σ(F02) = 258, Z(Var.) = 14; K1,74Rb0,26RbAu3Sb2, a = 6,288(2) Å, c = 21,617(5) Å, R/Rw (w = 1) = 0,049/0,069, Z(F) ? 3σ(F) = 390, Z(Var) = 14. The compounds crystallize with the K3Cu3P2-structure type. The Au? Sb partial structures consist of [AuSb2/3] layers with linear Sb? Au? Sb dumb-bells and SbAu3 pyramids. The layers are separated by two crystallographically independent alkali metal atoms along [001].  相似文献   

13.
Syntheses and Crystal Structures of the Thiochloroantimonates(III) PPh4[Sb2SCl5] and (PPh4)2[Sb2SCl6]. CH3CN (PPh4)2Sb3Cl11, obtained from Sb2S3, PPh4Cl and HCl, reacts with Na2S4 in acetonitrile forming PPh4[Sb2SCl5]. From this and Na2S4 or from (PPh4)2[Sb2Cl8] and Na2S4 or K2S5 in acetonitrile (PPh4)2[Sb2SCl6] · CH3CN is obtained. Data obtained from the X-ray crystal structure determinations are: PPh4[Sb2SCl5], monoclinic, space group P21/c, a = 1002.9(3), b = 1705.6(5), c = 1653.7(5) pm, β = 99.12(2)°, Z = 4, R = 0.068 for 1283 reflextions; (PPh4)2[Sb2SCl6] · CH3CN, triclinic, space group P1 , a = 1287.8(7), b = 1343.6(9), c = 1696.5(9) pm, α = 69.82(5), β = 85.08(4), γ = 71.54(6)°, Z = 2, R = 0.059 for 6409 reflexions. In every anion two Sb atoms are linked via one sulfur and one ore two chloro atoms, respectively. Paris of [SbSCl5]? ions are associated via Sb …? S and Sb …? Cl contacts forming dimer units. In both compounds every Sb atom has a distorted octahedral coordination when the lone electron pair is included in the counting.  相似文献   

14.
Abstract

Two inclusion compounds of the 11-[bis(p‐chlorophenyl)hydroxymethyl]-9,10-dihydro-9,10-ethanoanthracene host (1) have been studied by X-ray diffraction in order to find an explanation of the exceptional clathrate formation ability of the present chloro-containing host as compared with that of closely related chlorine-free host analogues. Crystal data: 1·ethyl acetate (2:1), C27H22OCl2·½(C4H8O2), Mw = 501.45, P21/c, a = 8.9060(5), b = 11.1109(6), c = 25.642(1) Å, β = 99.03(1)°, Z = 4, R = 0.047 for 2029 F values with I>2σ(I); 1·cyclohexylamine (1:2), 2[C29H22OCI2·2(C6H13N)], Mw = 1311.50, Pc, a = 12.144(2), b = 12.689(3), c =23.119(8) Å, β = 91.68(1)°, Z = 2, R = 0.054 for 3073 F values with I>2σ(I). Although the two solid inclusion compounds differ in host‐guest stoichiometry, space group symmetry and also in host‐guest recognition mode, both co-crystals are held together by numerous C?H…X (X = O, N or Cl) interactions, in which the chloro-substituents of 1 play a very active role. The observed frequent participation of chlorine in intermolecular interactions in these compounds suggests an ability of the (C?)Cl substituents to effectively enhance the crystal formation in the absence of more dominant forces.  相似文献   

15.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

16.
New selenidoantimonats [Ni(dien)2]2Sb2Se6 ( 1 ), [Mn(dien)2]2(SbSe4)(Cl) ( 2 ), [Co(dien)2]2(SbSe4)(Br) ( 3 ), and [Co(dien)2]3(SbSe4)2 ( 4 ) (dien = diethylenetriamine) were solvothermally synthesized in dien solvent at 180 °C. The crystal structure of 1 consists of two octahedral [Ni(dien)2]2+ cations and a mixed‐valent [Sb2Se6]4? anion. The isolated [Sb2Se6]4? anion is formed by a SbIIISe3 trigonal pyramid and a SbVSe4 tetrahedron sharing a common corner. 2 and 3 are composed of octahedral [M(dien)2]2+ cations, tetrahedral [SbSe4]3? anions and halide ions forming an extended network through hydrogen‐bonding interactions. In 4 the [Co(1)(dien)2]2+, [Co(2)(dien)2]2+ and [SbSe4]3? ions form layered structures via N–H···Se hydrogen bonds. The [Co(3)(dien)2]2+ ion is located between the layers, and interacts with the layers by N–H···Se bonds. The synthesis and solid state structural studies on the title compounds show that the higher reaction temperature is helpful for the formation of selenidoantimonate(V) compounds in the synthesis of selenidoantimonate from the M2+/Sb/Se/dien system. 1 – 4 start to decompose at temperature about 210 °C in N2 atmosphere. They lose dien ligands at a wide temperature range of 210–450 °C with multisteps for 1 – 3 and a single step for 4 .  相似文献   

17.
The title compound is orthorhombic witha = 26·132(6),b = 11·023(2),c = 8·317(5), ?; space group Iba2;Z = 8,D m = 1·21(1),D c = 1·192 Mg m−3, 1/2(H2O) per molecule in asymmetric unit; λ (MoKα) = 0·7107A; μ = 0·46 cm−1; F(000) = 936. The structure was solved by direct methods and refined to R(F) value of 0·069 using 327 reflections withF ≥ 5σ(F) out of 727 independent reflections for max = 46°. Thetrans fused cyclohexane and cyclohexanone rings form layers along thea-b plane. The axial methyl attached at the bridge-head, interlocks with the translated methylene of the cyclobutane fused across the cyclohexane ring. The equatorial hydroxyl at the bridge-head adjacent to the methyl junction and the water molecule on the two-fold form a water bridge along thez axis. The packing is reminiscent of that observed for the cholesterols used in membrane structure studies.  相似文献   

18.
Concentrated aqueous solutions of magnesium chloride and calcium nitrate, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4 · H2O, the isolation of the earth alkaline salts MgC4S4 · 6 H2O ( 1 ) and CaC4S4 · 4 H2O ( 2 ) as orange and red crystals. The crystal structure determinations ( 1 : monoclinic, C2/c, a = 17.2280(7), b = 5.9185(2), c = 13.1480(4) Å, β = 104.730(3)°, Z = 4; 2 : monoclinic, P21/m, a = 7.8515(3), b = 12.7705(5), c = 10.6010(4) Å, β = 93.228(2)°, Z = 4) show the presence of C4S42? ions with almost undistorted D4h symmetry having average C–C and C–S bond lengths of 1.451Å and 1.659Å for 1 and 1.451Å and 1.655Å for 2 . The structure of 1 contains discrete, octahedral [Mg(H2O)6]2+ complexes. Several O–H····O and O–H····S bridges with H····O and H····S distances of less than 2.50Å connect cations and anions. The structure of 2 is built of concatenated, edge‐sharing Ca(H2O)6S2 polyhedra. The Ca2+ ions have the coordination number eight, C4S42? act as a chelating ligands towards Ca2+ with Ca–S distances of 3.14Å. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

19.
The new ternary antimonide Ti5.42(2)Mo2.58Sb9 was uncovered by a reaction of the elements under exclusion of air at 1150 °C. It crystallizes in a ternary substitution variant of the V7.5Sb9 type, a structure not known to exist in either the Ti/Sb or the Mo/Sb system. The crystal structure of Ti5.42Mo2.58Sb9 was determined from single crystal X‐ray data: space group P4/nmm, with a = 9.8178(8) Å, c = 7.1857(8) Å, V = 692.6(1) Å3, Z = 2, R1 = 0.025, wR2 = 0.052 (all data). The structure contains four metal atom sites, two thereof occupied solely by Ti atoms, and two by different Ti/Mo mixtures. The former two correspond to the Zr sites, and the latter two to the V sites of the isostructural antimonide Zr2V6Sb9. The crystal structure is comprised of chains of face‐sharing TiSb8 square antiprisms, Ti/Mo tetrahedra and Sb atom pairs and squares. The electronic structure, computed with the LMTO approximation, is indicative of metallic properties. In addition to the dominating metal–Sb bonds, strong metal–metal and Sb–Sb bonds exist as well in Ti5.42Mo2.58Sb9. The Mo content per metal site increases with increasing metal–metal interactions.  相似文献   

20.
Ba7Fe6F32 · 2H2O was prepared from HF aqueous solution in a teflon bomb (Berghof) at 180°C. A partial exchange F?/OH? can be realized in more diluted HF medium and leads to Ba7Fe6F32–x(OH)x · 2H2O. The compounds crystallize in the monoclinic system, space group C2/m (Z = 2) with a = 17.023(1) Å, b = 11.482(1) Å, c = 7.624(1) Å, β = 101.13(1)° for x = 0 and a = 17.036(2) Å, b = 11.489(1) Å, c = 7.620(2) Å, β = 101.48(1)° for x ≈? 5.3. The structures were determined from 2 256 and 1 343 independent reflections for x = 0 and x ≈? 5.3 respectively, collected with a Siemens AED2 four-circle diffractometer with the MoKα radiation (R = 0.0235 and Rw = 0.0240 for x = 0 and R = 0.0324 and Rw = 0.0335 for x ≈? 5.3). The structure, closely related to that of the Jarlite-type, is built up from isolated octahedra trimers [Fe3F16]7?, connected together by Ba2+-cations. The location of anions and water molecules is discussed from bond valence calculations. Magnetic and Mössbauer studies are reported and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号