首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cycloaddition of different acetylenic compounds on the azido function of 3′-azido-2′,3′-dideoxythymidine and 3′-azido-2′,3′-dideoxyuridine afforded products with a 1,2,3-triazol-1-yl substituent in the 3′-position. In contrast with the parent compounds, these triazolyl derivatives had no appreciable activity against human immunodeficiency virus (HIV-1).  相似文献   

4.
Some 2′-deoxy-1′,2′-seco-D-ribosyl (5′→3′)oligonucleotides (= 1′,2′-seco-DNA), differing from natural DNA only by a bond scission between the centers C(1′) and C(2′), were synthesized and studied in order to compare their structure properties and pairing behavior with those of corresponding natural DNA and homo-DNA oligonucleotides (2′,3′-dideoxy-β-D-glucopyranosyl oligonucleotides). Starting from (?)-D-tartaric acid, 2′-deoxy-1′,2′-secoadenosine derivative 9a and 1′,2′-secothymidine ( 9b ) were obtained in pure crystalline form. Using the phosphoramidite variant of the phosphite-triester method, a dinucleotide monophosphate 1′,2′-seco-d(T2) was synthesized in solution, while oligonucleotides 1′,2′-seco-d[(AT)6], 1′,2′-seco-d(A10) and 1′,2′-seco-d(T10) were prepared on solid phase with either automated or manual techniques. Results of UV- and CD-spectroscopic as well as gel-electrophoretic studies indicated that neither adenine-thymine base pairing (as observed in natural DNA and homo-DNA), nor the adenine-adenine base pairing (as observed in homo-DNA) was effective in 1′,2′-seco-DNA, Furthermore, hybrid pairing was observed neither between 1′.2′-seco-DNA and natural DNA nor between 1′,2′-seco-DNA and homo-DNA.  相似文献   

5.
The syntheses of the 5′-triphosphates of 2′-deoxyisoguanosine (=p3isoGd) and 2′-deoxy-5-methylisocytidine (=p3me5isoCd), two new bases for the genetic alphabet, are described. The triphosphates were synthesized from the corresponding nucleosides using a transient-protection procedure. The introduction of a methyl group at the 5-position of 2′-deoxyisocytidine remarkably improved the stability of the triphosphate. Characterization of the triphosphates included enzymatic incorporation opposite the complementary base in a template oligonucleotide.  相似文献   

6.
7.
The synthesis of two new acyclic nucleoside analogs, 2-(2′,3′-dihydroxypropyl)-5-amino-2H-1,2,4-thiadiazol-3-one (1) and 3-(2′,3′-dihydroxypropyl)-5-amino-3H-1,3,4-thiadiazol-2-one (2), is reported. The first compound, 1, was obtained by reaction of 3-chloro-1,2-propanediol with the sodium salt of 5-amino-2H-1,2,4-thiadiazol-3-one (3) in anhydrous dimethylformamide. Similarly, 5-amino-3H-1,3,4-thiadiazol-2-one (4) reacted with 3-chloro-1,2-propanediol to give 2. The thiadiazole 4 was prepared by condensation-cyclization of hydrazothiodicarbonamide (9).  相似文献   

8.
The dinucleoside phosphate ΠdpΠd ( 4 ) was synthesized from the monomers 1-(5′-O-monomethoxytrityl - 2′ - deoxy - β - D - ribofuranosyl) - 2 (1 H) - pyridone ((MeOTr) Πd, 2 ) and 1-(5′-O-phosphoryl-3′-O-acetyl-2′-deoxy-β-D -ribofuranosyl)-(1H)-pyridone (pΠd(Ac), 3 ). Its 6.4% hyperchromicity and an analysis of the 1H-NMR. spectra indicate that the conformation and the base-base interactions in 4 are similar to those in natural pyrimidine dinucleoside phosphates.  相似文献   

9.
We describe the synthesis of 2′-deoxy-3′,5′-ethano-D -ribonucleosides 1 – 8 (= (5′,8′-dihydroxy-2′-oxabicyclo-[3.3.0]oct-3′-yl)purines or -pyrimidines) of the nucleobases adenine, thymine, cytosine, and guanine. They differ from natural 2′-deoxyribonucleosides only by an additional ethylene bridge between the centers C(3′) and C(5′). The configuration at these centers (3S,5′R) was chosen as to match the geometry of a repeating nucleoside unit in duplex DNA as close as possible. These nucleosides were designed to confer, as constituents of an oligonucleotide chain, a higher degree of preorganization of a single strand for duplex formation with respect to natural DNA, thus leading to an entropic advantage for the pairing process. The synthesis of these ‘bicyclonucleosides’ was achieved by construction of an enantiomerically pure carbohydrate precursor 18 / 19 (Schemes 1), which was then converted to the corresponding nucleosides by known methods in nucleoside synthesis (Schemes 2 and 3). In all cases, both anomeric forms of the nucleosides were obtained in pure crystalline form, the relative configuration of which was established by 1H-NMR-NOE spectroscopy. A conformational analysis of the nucleosides with β-configuration at the anomeric center by means of X-ray and 1H-NMR (including NOE) spectroscopy show the furanose part of the molecules to adopt uniformly a 1′exo-conformation with the base substituents preferentially in the anti-range in the pyrimidine nucleosides (anti/syn ca. 2:1) distribution in the purine nucleosides (in solution).  相似文献   

10.
The synthesis of the polyhalogenated phenylalanines Phe(3′,4′,5′-Br3) ( 3 ), Phe(3′,5′-Br2-4′-Cl) ( 4 ) and DL -Phe (2′,3′,4′,5′,6′-Br5) ( 9 ) is described. The trihalogenated phenylalanines 3 and 4 are obtained stereospecifically from Phe(4′-NH2) by electrophilic bromination followed by Sandmeyer reaction. The most hydrophobic amino acid 9 is synthesized from pentabromobenzyl bromide and a glycine analogue by phase-transfer catalysis. With the amino acids 4, 9 , Phe(4′-I) and D -Phe, analogues of [1-sarcosin]angiotensin II ([Sar1]AT) are produced for structure-activity studies and tritium incorporation. The diastereomeric pentabromo peptides L - and D - 13 are separated by HPLC. and identified by catalytic dehalogenation and comparison to [Sar1]AT ( 10 ) and [Sar1, D -Phe8]AT ( 14 ).  相似文献   

11.
12.
A method is described for the qualitative and quantitative determination of configurational isomers of zeaxanthin (=3,3′ -dihydroxy-β, β -carotene) and lutein (=3,3′ -dihydroxy-α -cartotene). It is based on the reaction of these zeaxathin and lutein isomers with (S)-(+)-α-(1-naphthyl) ethyl isocyanate to afford diastereomeric dicarbamates, which are analyzed by HPLC.  相似文献   

13.
Oligonucleotides containing 2′-deoxyisoguanosine ( 1 ) or 2-chloro-2′-deoxyadenosine ( 2a ) have been prepared by solid-phase synthesis. Suitably protected phosphonates 3a, 4a , and 4b as well as the phosphoramidite of 1 have been obtained from the nucleosides 1, 2a , or 2b via the (dimethylamino)methylidene derivatives 5–7 . 4,4′-Dimethoxytrityl groups were introduced to yield the base-protected derivatives 8–10 . Alternatively to the direct incorporation of 1 into oligonucleotides, they were also obtained by the photochemical conversion of a 2a residue within the oligonucleotide chain.  相似文献   

14.
Via the phosphotriester approach, new structural analogs of (2′–5′)oligoadenyiates, namely 3′-deoxyadenylyl-(2′–5′)-3′-dcoxyadenylyl-(2′–ω)-9-(ω-hydroxyalkyl)adenines 18 – 21 , have been synthesized (see Scheme) which should preserve biological activity and show higher stability towards phosphodiesterases. The newly synthesized oligonucleotides 18 – 21 have been characterized by 1H-NMR spectra, TLC, and HPLC analysis.  相似文献   

15.
α-MSH was labelled at its tyrosine2 residue with tritium and iodine. Several synthetic routes were investigated by preparing 13 precursor or mode compounds and 4 different labelled products (via about 40 intermediates). Their melanotropic activity was determined with an in vitro frog skin assay and, for some of the compounds, with a tyrosinase assay. The tritiation was performed on [Tyr(I2)2]α-MSH by catalytic halogen/tritium exchange, yielding α-MSH of high specific radioactivity (34 Ci/mmol) and full biological activity. Iodination was studied in detail using five different techniques. An equimolar chloramine T procedure proved to be the most convenient and reproducible method, resulting in monoiodinated α-MSH containing 99% of the label in position 2. The biological activity was 50% that of α-MSH; the specific radioactivity, determined in a competitive binding assay with a highly specific α-MSH antiserum and [Tyr(I)2]α-MSH as competitor, was 1530 Ci/mmol. The labelling techniques and the bioligical results are discussed.  相似文献   

16.
A series of 2-substituted 4-oxo-3-thiazolidinylalkanoic acids bearing an isoxazole nucleus in the 2-position have been prepared. None of the compounds synthesised showed antibacterial activity in vitro.  相似文献   

17.
Conformational transformations of the title compound 1 were studied using high-resolution 1H-nmr techniques, semi-empirical PM3 calculations and molecular dynamics. The unfused furan-pyrimidine ring system of 1 predominantly exists in an s-trans conformation in solution and the considerable sp2 character of the C2?amino bond results in the hindered rotation which is observed on the nmr time scale.  相似文献   

18.
19.
3-(3′-,4′-Hydroxyphenyl)sydnones were prepared by dealkylation of 3-(3′-,4′-alkoxyphenyl)sydnones with concentrated sulfuric acid at room temperature in a range of 59 to 86% yield.  相似文献   

20.
5-(α-Fluorovinyl)tryptamines 4a, 4b and 5-(α-fluorovinyl)-3-(N-methyl-1′,2′,5′,6′-tetrahydropyridin-3′- and -4′-yl) indoles 5a, 5b were synthesized using 5-(α-fluorovinyl)indole ( 7 ). The target compounds are bioisosteres of 5-carboxyamido substituted tryptamines and their tetrahydropyridyl analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号