首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Different beta-cyclodextrines (beta-cyclodextrin, heptakis (2,3,6-tri-O-methyl)-beta-cyclodextrin, hydroxypropyl-beta-cyclodextrin, and sulfated beta-cyclodextrin) were investigated as additives for the enantioselective separation of the R-form from rivastigmine ((S)-N-ethyl-3-[(1-dimethylamino) ethyl]-N-methyl-phenyl carbamate), contained as impurity in this drug, which is used for the treatment of Alzheimer's disease. Electrophoresis was performed in an acidic background electrolyte (triethanolammonium phosphate, 75 mM, pH 2.5) with various concentrations of the additives. The electrophoretic mobilities measured are typical functions of the additive concentrations, with complex constants (obtained by fitting the appropriate binding curve on the data) ranging between about 180 and 770 M(-1). Best separation was obtained with 7.5 mM beta-cyclodextrin, with the R-enantiomer as impurity migrating before the main S-compound. Intra- and interday reproducibility (n = 6 and 18, respectively) of migration time and peak area was in the low percentage range, linearity of the calibration line for the quantitation of the impurity in the range between 2.3 and 50 microg/ml, expressed by the linear correlation coefficient, was 0.9998. The limits of detection and quantitation, respectively, were 0.7 and 2.3 microg/ml, corresponding to 0.05 and 0.15%, m/m of the R- relative to the S-compound. Analysis can be carried out at 18 degrees C in less than 19 min.  相似文献   

2.
    
Capillary electrophoresis represents a promising technique in the field of pharmaceutical analysis. The presented review provides a summary of capillary electrophoretic methods suitable for routine quality control analyses of small molecule drugs published since 2015. In total, more than 80 discussed methods are sorted into three main sections according to the applied electroseparation modes (capillary zone electrophoresis, electrokinetic chromatography, and micellar, microemulsion, and liposome-electrokinetic chromatography) and further subsections according to the applied detection techniques (UV, capacitively coupled contactless conductivity detection, and mass spectrometry). Key parameters of the procedures are summarized in four concise tables. The presented applications cover analyses of active pharmaceutical ingredients and their related substances such as degradation products or enantiomeric impurities. The contribution of reported results to the current knowledge of separation science and general aspects of the practical applications of capillary electrophoretic methods are also discussed.  相似文献   

3.
Summary A capillary electrophoretic (CE) method for the determination of organic acids in the low ppm range is described. The buffer consisted of 5 mM 2,6-pyridinedicarboxylic acid and 0.5 mM cetyltrimethylammonium bromide, pH 5.6. The former served as background electrolyte for indirect UV detection at 200 nm, whereas the latter was used to reverse electroosmotic flow. In <5 min 8 low molecular mass organic acids (oxalic, formic, malonic, glutaric, glycolic, acetic, lactic and propanoic) and two inorganic acids (hydrochloric and sulphuric) were separated. Detection limits for anions tested were 0.04 mg L−1 (lactic acid) to 0.6 mg L−1 (malonic acid). The method was applied to the determination of organic acids in air samples. The CE results when compared with ion-exclusion chromatography (IEC) agreed well. The use of electrokinetic injection in CE proved beneficial for preconcentration of organic acids in real samples. Using electrokinetic injection, preconcentration factors ranging from 14 (hydrochloric acid) to 3 (propanoic acid) were obtained. Presented at Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 1–3, 1999  相似文献   

4.
    
The linear theory of electromigration, including the first‐order nonlinear approximation, is generalized to systems with any equilibria fast enough to be considered instantaneous in comparison with the timescale of peak movement. For example, this theory is practically applied in the electrokinetic chromatography (EKC) mode of the CZE. The model enables the calculation of positions and shapes of analyte and system peaks without restricting the number of selectors, the complexation stoichiometry, or simultaneous acid–base equilibria. The latest version of our PeakMaster software, PeakMaster 6—Next Generation, implements the theory in a user‐friendly way. It is a free and open‐source software that performs all calculations and shows the properties of the background electrolyte and the expected electropherogram within a few seconds. In this paper, we mathematically derive the model, discuss its applicability to EKC systems, and introduce the PeakMaster 6 software.  相似文献   

5.
Pascoe RJ  Foley JP 《Electrophoresis》2003,24(24):4227-4240
The physical, electrophoretic and chromatographic properties (mean diameter, electroosmotic flow, electrophoretic mobility, elution range, efficiency, retention, and hydrophobic, shape, and chemical selectivity) of three surfactant vesicles and one phospholipid vesicle were investigated and compared to a conventional micellar pseudostationary phase comprised of sodium dodecyl sulfate (SDS). Chemical selectivity (solute-pseudostationary phase interactions) was discussed from the perspective of linear solvation energy relationship (LSER) analysis. Two of the surfactant vesicles were formulated from nonstoichiometric aqueous mixtures of oppositely charged, single-tailed surfactants, either cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) in a 3:7 mole ratio or octyltrimethylammonium bromide (OTAB) and SDS in a 7:3 mole ratio. The remaining surfactant vesicle was comprised solely of bis(2-ethylhexyl)sodium sulfosuccinate (AOT) in 10% v/v methanol, and the phospholipid vesicle consisted of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC) and phosphatidyl serine (PS) in 8:2 mole ratio. The mean diameters of the vesicles were 76.3 nm (AOT), 86.9 nm (CTAB/SOS), 90.1 nm (OTAB/SDS), and 108 nm (POPC/PS). Whereas the coefficient of electroosmotic flow (10(-4) cm2 V(-1) s(-1)) varied considerably (1.72 (OTAB/SDS), 3.77 (CTAB/SOS), 4.05 (AOT), 5.26 (POPC/PS), 5.31 (SDS)), the electrophoretic mobility was fairly consistent (-3.33 to -3.87 x 10(-4) cm2 V(-1) s(-1)), except for the OTAB/SDS vesicles (-1.68). This resulted in elution ranges that were slightly to significantly larger than that observed for SDS (3.12): 3.85 (POPC/PS), 8.6 (CTAB/SOS), 10.1 (AOT), 15.2 (OTAB/SDS). Significant differences were also noted in the efficiency (using propiophenone) and hydrophobic selectivity; the plate counts were lower with the OTAB/SDS and POPC/PS vesicles than the other pseudostationary phases (< or = 75,000/m vs. > 105,000/m), and the methylene selectivity was considerably higher with the CTAB/SOS and OTAB/SDS vesicles compared to the others (ca. 3.10 vs. < or = 2.6). In terms of shape selectivity, only the CTAB/SOS vesicles were able to separate all three positional isomers of nitrotoluene with near-baseline resolution. Finally, through LSER analysis, it was determined that the cohesiveness and hydrogen bond acidity of these pseudostationary phases have the greatest effect on solute retention and selectivity.  相似文献   

6.
Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.  相似文献   

7.
The effect of the superposition of electroosmotic flow and pressureinduced hydrodynamic counterflow on efficiency has been investigated for different capillary electrophoretic systems. Results are shown for 50 and 75 μm internal diameter capillaries at several voltage and counterpressure levels. Hydrodynamic counterflows were successfully applied in electrokinetic chromatography in order to delay the entry of a UV-active pseudostationary phase, tetraphenyl porphyrintetrasulfonate, into the detection zone allowing the separation of neutral nitroaromatics. The separations are based on the weak charge-transfer interactions between the porphyrin and the analytes.  相似文献   

8.
    
Polyacrylamide gel electrophoresis (PAGE) is used frequently for isolation and purification of DNA fragments. In the present study, DNA fragments extracted from polyacrylamide gels showed significant band broadening in capillary electrophoresis (CE). A pHY300PLK (a shuttle vector functioning in Escherichia coli and Bacillus subtilis) marker, which contained nine fragments ranging from 80 to 4870 bp, was separated by PAGE, and each fragment was isolated by phenol/chloroform extraction and ethanol precipitation. After extraction from the polyacrylamide gel, the peaks of the isolated DNA fragments exhibited band broadening in CE, where a linear poly(ethylene oxide) was used as a sieving matrix. The theoretical plate numbers of the DNA fragments contained in the pHY300PLK marker were >106 for all the fragments before extraction. However, the DNA fragments extracted from the polyacrylamide gel showed decreased theoretical plate numbers (5–20 times smaller). The degradation of the theoretical plate number was significant for middle sizes of the DNA fragments ranging from 489 to 1360 bp, whereas the largest and smallest fragments (80 and 4870 bp) had no obvious influence. The band broadening was attributed to contamination of the DNA fragments by polyacrylamide fibers during the separation and extraction process.  相似文献   

9.
A chiral procedure based on EKC was developed and validated for determination of the enantiomeric purity of PHA-543613, a drug candidate that was under development for treatment of the cognitive deficits of Alzheimer's disease and schizophrenia. Separation of enantiomers is accomplished via differential, enantiospecific complexation with a single-isomer, precisely sulfated beta-CD and heptakis-6-sulfato-beta-CD (HpS-beta-CD). Both neutral and sulfated CDs were screened before selecting HpS-beta-CD as the chiral selector. The separation is conducted in a 61 cm x 50 microm uncoated fused silica capillary with 25 mM HpS-beta-CD in pH 2.50, 25 mM lithium phosphate as the separation buffer with detection at 220 nm. Application of reverse polarity at -30 kV results in an elution time of about 12 min for PHA-543613 and 13 min for the undesired S-enantiomer. Quantification is versus an authentic reference S-enantiomer as an external standard in combination with an internal standard. The procedure was validated over the range 0.1-2.0% w/w. The detection limit is 0.01-0.02%. The amount of distomer intrinsic to the drug substance is about 0.1% or less. The developed method was used to generate stability data on multiple lots: in one case for up to 3 years.  相似文献   

10.
A nonaqueous capillary electrophoresis (NACE) method, 30 mM ammonium acetate in methanol as background electrolyte (BGE), was developed for separation of the organomercury species without complexing reagents. The effects of different solutes and solvents in BGE were studied. Three species of organomercury, methylmercury, ethylmercury and phenylmercury, were separated well and all the number of theoretical plates were over 106. The present NACE method was also coupled with sample stacking and electrokinetic injection techniques to enhance the detection sensitivity. Under the optimum conditions, the limit of detection (S/N = 3) is 18 ng mL−1 and the linear relation range from 40 to 750 ng mL−1 were obtained for methylmercury.  相似文献   

11.
This work describes the development of a capillary electrophoresis(CE)method for the simultaneous separation of acetophenone(AP),2-hydroxyacetophenone(2-HAP),3-hydroxyacetophenone(3-HAP)and 4-hydroxyacetophenone(4-HAP)in synthetic mixtures using 10 mmol/L of sodium tetraborate buffer(pH 9.5).The aim of this work is to demonstrate the effectiveness of CE to separate AP and its monohydroxy isomers and to defne how the separations are affected by buffers,buffer pH,sample matrices and separation voltage.This method was successfully used for the trace level separation and determination of 2-HAP,3-HAP and 4-HAP in synthetic mixture and 4-HAP in spiked plasma samples.  相似文献   

12.
The capillary electrophoretic (CE) separation of the enantiomers of three binaphthyl compounds is investigated. Several CE modes such as cyclodextrin (CD) modified capillary zone electrophoresis (CZE) (CD-CZE), micellar electrokinetic chromatography (MEKC), cyclodextrin electrokinetic chromatography (CD-EKC), etc. are employed for the simultaneous enantiomer separation of the three solutes. The successful separation was achieved by combining two modes, in other words by using more than two chiral selectors. A development of the CE enantiomer separation is demonstrated for the binaphthyl compounds. The enantioselectivity of binaphthyl compounds is alo briefly discussed.  相似文献   

13.
    
The activation energy related to the electromigration of oligosaccharides can be determined from their measured electrophoretic mobilities at different temperatures. The effects of a viscosity modifier (ethylene glycol) and a polymeric additive (linear polyacrylamide) on the electrophoretic mobility of linear sugar oligomers with α1–4 linked glucose units (maltooligosaccharides) were studied in CE using the activation energy concept. The electrophoretic separations of 8‐aminopyrene‐1,3,6‐trisulfonate‐labeled maltooligosaccharides were monitored by LIF detection in the temperature range of 20–50°C, using either 0–60% ethylene glycol (viscosity modifier) or 0–3% linear polyacrylamide (polymeric additive) containing BGEs. Activation energy curves were constructed based on the slopes of the Arrhenius plots. With the use of linear polyacrylamide additive, solute size‐dependent activation energy variations were found for the maltooligosaccharides with polymerization degrees below and above maltoheptaose (DP 7), probably due to molecular conformation changes and possible matrix interaction effects.  相似文献   

14.
Monolithic capillary columns for hydrophobic interaction chromatography (HIC) have been prepared by thermally initiated, single-step in situ polymerization of mixtures of monovinyl monomers including butyl methacrylate and/or 2-hydroxyethyl methacrylate, with a divinyl crosslinker glycerol dimethacrylate or 1,4-butanediol dimethacrylate using two different porogen systems. Two porogenic solvent mixtures were used; one "hydrophilic", consisting of water, butanediol, and propanol, and one "hydrophobic," comprising dodecanol and cyclohexanol. The porous structures of the monoliths were characterized and their performance was demonstrated with a separation of a mixture of myoglobin, ribonuclease A, and lysozyme under conditions typical of HIC.  相似文献   

15.
采用脂质体模拟生物膜作为CE的运行介质, 探讨了一种可简单、快速获得tl值的新技术, 即根据系列标准化合物在LCE中的迁移时间与其疏水参数的关系进行非线性拟合得到tl值. 将该方法用于6种苯类化合物的疏水参数测定, 并对测定结果的准确性进行了比较.  相似文献   

16.
Tsai CH  Yang RJ  Tai CH  Fu LM 《Electrophoresis》2005,26(3):674-686
The effective design and control of a capillary electrophoresis (CE) microchip requires a thorough understanding of the electrokinetic transport phenomena associated with its microfluidic injection system. The present study utilizes a numerical simulation approach to investigate these electrokinetic transport processes and to study the control parameters of the injection process. Injection systems with a variety of different configurations are designed and tested, including the cross-form, T-form, double-T-form, variable-volume focused flow cross-form, and variable-volume triple-T-form configuration. Each injection system cycles through a predetermined series of steps in which the magnitudes and distributions of the applied electric field are precisely manipulated in order to effectuate a virtual valve. This study investigates the sample leakage effect associated with each of the injection configurations and applies the double-L, pullback, and focusing injection techniques to minimize the sample leakage effect. The injection methods presented in this paper have the exciting potential for use in high-quality, high-throughput chemical analysis applications and throughout the micro-total-analysis systems field.  相似文献   

17.
There is a great potential for miniaturized analytical separation systems, e.g. in process control, environmental monitoring, or clinical chemistry. Particularly, miniaturized electro-driven systems open many new possibilities. Most efforts in this area have been focused on cylindrical capillary columns. In the present paper, thin rectangular conduits are considered and comparisons with cylindrical tubes are made on the basis of theoretical models. A critical and limiting factor in electro-driven separations is the generation of heat. For a given cross-section, heat dissipation is more efficient in rectangular columns. Silicon is proposed as column material. Apart from the better thermal conductivity, monocrystalline silicon can be machined with an extraordinary precision when selective chemical etching procedures are employed. This precision is of central importance in the development of miniaturized high performance systems.  相似文献   

18.
采用电场增强胶束扫集-电动色谱-毛细管电泳法对升麻中异阿魏酸、阿魏酸和咖啡酸的含量进行了测定,电泳缓冲体系为90 mmol·L~(-1)SDS-20 mmol·L~(-1)NaH_2PO_4(pH 2.20)-甲醇(10+90),分离电压为20 kV,检测波长214 nm。在优化的试验条件下,胶束扫集-电动色谱法对异阿魏酸、阿魏酸和咖啡酸富集倍数为4.3,4.8,2.9,3种有机酸均在14 min内出峰,线性范围分别为0.50~20.0,0.50~20.0,1.0~40.0 mg·L~(-1)。应用此方法分析了升麻样品并进行了回收率和精密度试验,测得回收率在93.2%~113.3%之间,测定值的相对标准偏差(n=5)小于6%。  相似文献   

19.
20.
Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号