首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using 13C- and 1H-NMR spectroscopy, titanium(IV) species formed in the catalytic systems Cp*TiMe3/MAO and Cp*TiCl3/MAO (Cp*=C5(CH3)5) in toluene and chlorobenzene were studied within the temperature range 253-293 K and at Al/Ti ratios 30-300. It was shown that upon activation of Cp*TiMe3 with methylaluminoxane (MAO) mainly the ‘cation-like’ intermediate Cp*Me2Ti+←MeAl(MAO) (2) is formed. Three types of titanium(IV) complexes were identified in Cp*TiCl3/MAO catalytic system. They are methylated complexes Cp*TiMeCl2 and Cp*TiMe2Cl, and the ‘cation-like’ intermediate 2. Complex 2 dominates in Cp*TiCl3/MAO system in conditions approaching to those of practical polymerization (Al/Ti ratios more than 200). According to the EPR measurements, the portion of EPR active Ti(III) species in the Cp*TiCl3/MAO system is smaller than 1% at Al/Ti=35, and is about 10% at Al/Ti=700.  相似文献   

2.
The polymerization of vinyl chloride (VC) with half‐titanocene /methylaluminoxane (MAO) catalysts is investigated. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst (Cp* = η5‐pentamethylcyclopentadienyl) afforded high‐molecular‐weight poly(vinyl chloride) (PVC) in good yields, although the polymerization proceeded at a slow rate. With the Cp*TiCl3/MAO catalyst, the polymer was also obtained, but the polymer yield was lower than that with the Cp*Ti(OCH3)3/MAO catalyst. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst was influenced by the MAO/Ti mole ratio and reaction temperature, and the optimum was observed at the MAO/Ti mole ratio of about 10. The optimum reaction temperature of VC with the Cp*Ti(OCH3)3/MAO catalyst was around 20 °C. The stereoregularity of PVC obtained with the Cp*Ti(OCH3)3/MAO catalyst was different from that obtained with azobisisobutyronitrile, but highly stereoregular PVC could not be synthesized. From the elemental analyses, the 1H and 13C NMR spectra of the polymers, and the analysis of the reduction product from PVC to polyethylene, the polymer obtained with Cp*Ti(OCH3)3/MAO catalyst consisted of only regular head‐to‐tail units without any anomalous structure, whereas the Cp*TiCl3/MAO catalyst gave the PVC‐bearing anomalous units. The polymerization of VC with the Cp*Ti(OCH3)3/MAO catalyst did not inhibit even in the presence of radical inhibitors such as 2,2,6,6,‐tetrametylpiperidine‐1‐oxyl, indicating that the polymerization of VC did not proceed via a radical mechanism. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 248–256, 2003  相似文献   

3.
A novel metallocene catalyst was prepared from the reaction of (η3‐pentamethylcyclopentadienyl)dimethylaluminum (Cp*AlMe2) and titanium(IV) n‐butoxide Ti(OBu)4. The resulting titanocene Cp*Ti(OBu)3 was combined with methylaluminoxane (MAO)/tri‐iso‐butylaluminum (TIBA) to carry out the syndiotactic polymerization of styrene. The resulting syndiotactic polystyrene (sPS) possesses high syndiotacticity according to 13C NMR. Catalytic activity and the molecular weight of the resulting sPSs were discussed in terms of reaction temperature, concentration of MAO, amounts of scavenger TIBA added, and the hydrogen pressure applied during polymerization.  相似文献   

4.
A series of Me4Cp–amido complexes {[η51‐(Me4C5)SiMe2NR]TiCl2; R = t‐Bu, 1 ; C6H5, 2 ; C6F5, 3 ; SO2Ph, 4 ; or SO2Me, 5 } were prepared and investigated for olefin polymerization in the presence of methylaluminoxane (MAO). X‐ray crystallography of complexes 3 and 4 revealed very long Ti N bonds relative to the bonds of 1 . These complexes were employed for ethylene–styrene copolymerizations, styrene homopolymerizations, and propylene homopolymerizations in the presence of MAO. The productivities of the catalysts derived from 3 – 5 were much lower than the productivity of the catalyst derived from 1 for the propylene polymerizations and ethylene–styrene copolymerizations, whereas the styrene polymerization activities were much higher for the catalysts derived from 3 – 5 than for the catalyst derived from 1 . The polymerization behavior of the catalysts derived from the metallocenes 3 – 5 were more reminiscent of monocyclopentadienyl titanocene Cp′TiX3/MAO catalysts than of CpATiX2/MAO catalysts such as 1 containing alkylamido ligands. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4649–4660, 2000  相似文献   

5.
Ethylene/styrene copolymerizations using Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* (C5Me5, 1 ), 1,2,4‐Me3C5H2 ( 2 ), tert‐BuC5H4 ( 3 )]‐MAO catalyst systems were explored under various conditions. Complexes 2 and 3 exhibited both high catalytic activities (activity: 504–6810 kg‐polymer/mol‐Ti h) and efficient styrene incorporations at 25, 40°C (ethylene 6 atm), affording relatively high molecular weight poly (ethylene‐co‐styrene)s with unimodal molecular weight distributions as well as with uniform styrene distributions (Mw = 6.12–13.6 × 104, Mw/Mn = 1.50–1.71, styrene 31.7–51.9 mol %). By‐productions of syndiotactic polystyrene (SPS) were observed, when the copolymerizations by 1 – 3 ‐MAO catalyst systems were performed at 55, 70 °C (ethylene 6 atm, SPS 9.0–68.9 wt %); the ratios of the copolymer/SPS were affected by the polymerization temperature, the [styrene]/[ethylene] feed molar ratios in the reaction mixture, and by both the cyclopentadienyl fragment (Cp′) and anionic ancillary donor ligand (L) in Cp′TiCl2(L) (L = Cl, O‐2,6‐iPr2C6H3 or N=CtBu2) employed. Co‐presence of the catalytically‐active species for both the copolymerization and the homopolymerization was thus suggested even in the presence of ethylene; the ratios were influenced by various factors (catalyst precursors, temperature, styrene/ethylene feed molar ratio, etc.). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4162–4174, 2008  相似文献   

6.
对位卤代的苯酚与五甲基茂三氯化钛在三乙胺存在下进行酯化反应 ,制得五甲基茂基三 (对 卤代苯氧基 )钛的 4种新型化合物Cp Ti(O C6 H4 X) 3(X =F ,Cl,Br,I) .用作主催化剂经甲基铝氧烷 (MAO)和三异丁基铝 (TIBA)活化 ,对苯乙烯间规聚合显示出极高的催化活性 ,催化剂热稳定性好 ,制得的聚苯乙烯间规度、分子量和熔点均高 ,在MAO TIBA Ti =4 0 0 2 0 0 1(摩尔比 ) ,温度 6 0℃时 ,10min催化效率可达 3 4 7× 10 6gPS mol·Ti,MAO TIBA Ti=4 0 0 2 0 0 1时茂钛化合物的催化活性几乎是MAO Ti=6 0 0时的 10倍以上 ;4种茂钛催化剂的活性次序Cp Ti(O C6 H4 F) 3 >Cp Ti(O C6 H4 Cl) 3 >Cp Ti(O C6 H4 Br) 3 >Cp Ti(O C6 H4 I) 3 .  相似文献   

7.
The syndiospecific polymerization of styrene was investigated with the fluorine‐containing half‐sandwich complexes η5‐pentamethylcyclopentadienyl titanium bis(trifluoroacetate) dimer, η5‐octahydrofluorenyl titanium tristrifluoro‐acetate, η5‐octahydrofluorenyl titanium dimethoxymonotrifluoroacetate, and η5‐octahydrofluorenyl titanium tris(pentafluorobenzoate) in comparison to known chloride and methoxide complexes in the presence of relatively low amounts of methylalumoxane and triisobutylaluminum. After the selection of effective reaction conditions for a solvent‐free polymerization, the following orders of decreasing polymerization activity of the titanium complexes can be observed: for pentamethylcyclopentadienyl compounds, Cp*Ti(OMe)3 > [Cp*Ti(OCOCF3)2]2O ≈ Cp*TiCl3, and for octahydrofluorenyl compounds, [656]Ti(OMe)3 > [656]Ti(OCOC6F5)3 > [656]Ti(OCH3)2(OCOCF3) > [656]Ti (OCOCF3)3. The [656]Ti complexes, showing the highest polymerization conversions at 70 °C and in comparison with the Cp* Ti compounds, turned out to be highly efficient catalysts for the syndiospecific styrene polymerization. The fluorine‐containing Cp* and [656]Ti complexes lead to much higher molecular weights than the chloride and methoxide compounds because of a reduction in chain‐limiting transfer reactions. The introduction of only one fluorine‐containing ligand into the coordination sphere of the metal compound is obviously sufficient for a significant increase in molecular weight. The active polymerization sites of the [656]Ti complexes with methylalumoxane and triisobutylaluminum are extremely stable during storage at room temperature in regard to their polymerization activity. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2428–2439, 2000  相似文献   

8.
Polymerization of vinyl chloride (VC) with titanium complexes containing Ti‐OPh bond in combination with methylaluminoxane (MAO) catalysts was investigated. Among the titanium complexes examined, Cp*Ti(OPh)3/MAO catalyst (Cp*; pentamethylcyclopentadienyl, Ph; C6H5) gave the highest activity for the polymerization of VC, but the polymerization rate was slow. From the kinetic study on the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst, the relationship between the Mn of the polymer and the polymer yields gave a straight line, and the line passed through the origin. The Mw/Mn values of the polymer gradually decrease as a function of polymer yields, but the Mw/Mn values were somewhat broad. This may be explained by a slow initiation in the polymerization of VC with Cp*Ti(OPh)3/MAO catalyst. The results obtained in this study demonstrate that the molecular weight control of the polymers is possible in the polymerization of VC with the Cp*Ti(OPh)3/MAO catalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3872–3876, 2007  相似文献   

9.
Several non-metallocene (Ti, Zr) and substituted mono-Cp titanium metallocenes have been tested in the presence of methylalumoxane (MAO) as catalyst for syndiospecific polymerization of styrene. Effect of substitutions on the titanium and Cp ligand, molar ratio of Al/Ti, TMA and temperature on activity, Mwt. and % sPS were studied. CpTi(OiPr)3 gives a less active catalyst than Cp*Ti(OiPr)3 and the resulting sPS is less stereoregular and of lower molecular weight.  相似文献   

10.
Syndiospecific polymerization of styrene (S) was catalyzed by Bz4Ti/MAO (tetrabenzyltitanium/methylaluminoxane). The product was separated into syndiotactic polystyrene (s-PS) and atactic polystyrene (a-PS) by extraction of the latter with boiling 2-butanone. Over the broad range of catalyst concentrations, compositions, and polymerization temperatures, the catalytic activity is 150 ± 80kg PS (mol Ti mo S h)?1 with 89 ± 5% yield of s-PS (SY). The concentration of active species has been determined by radiolabeling. Only about 1.7% of Bz4Ti initiates syndiospecific polymerization at 60°C with values of rate constants for propagation and for chain transfer to MAO of 1.38 (M s)?1 and 5.2 × 10?4s?1, respectively. Nonspecific polymerization was initiated by 16.8% of the Ti having values of 0.056 (M s)?1 and 6.5 × 10?4 s?1 for the rate constants of propagation and transfer, respectively. The effect of solvent polarity on the polymerization was studied using toluene mixed with chlorobenzene of o-dichlorobenzene as solvents. An increase of effective dielectric constant from 2.43 to 5.92 reduces the polymerization activity by a factor of two and lowers SY to mere 39%. In 1 : 1 toluene/chlorobenzene solvent mixture, it was found that 1.3% and 26% of the Bz4Ti initiate syndiospecific and nonspecific polymerizations of styrene, respectively. The Bz4Ti/MAO catalyst is poor in both productivity and stereoselectivity.  相似文献   

11.
A series of mono‐, bis‐, and tris(phenoxy)–titanium(IV) chlorides of the type [Cp*Ti(2‐R? PhO)nCl3?n] (n=1–3; Cp*=pentamethylcyclopentadienyl) was prepared, in which R=Me, iPr, tBu, and Ph. The formation of each mono‐, bis‐, and tris(2‐alkyl‐/arylphenoxy) series was authenticated by structural studies on representative examples of the phenyl series including [Cp*Ti(2‐Ph? PhO)Cl2] ( 1 PhCl2 ), [Cp*Ti(2‐Ph? PhO)2Cl] ( 2 PhCl ), and [Cp*Ti(2‐Ph? PhO)3] ( 3 Ph ). The metal‐coordination geometry of each compound is best described as pseudotetrahedral with the Cp* ring and the 2‐Ph? PhO and chloride ligands occupying three leg positions in a piano‐stool geometry. The mean Ti? O distances, observed with an increasing number of 2‐Ph? PhO groups, are 1.784(3), 1.802(4), and 1.799(3) Å for 1 PhCl2 , 2 PhCl , and 3 Ph , respectively. All four alkyl/aryl series with Me, iPr, tBu, and Ph substituents were tested for ethylene homopolymerization after activation with Ph3C+[B(C6F5)4]? and modified methyaluminoxane (7% aluminum in isopar E; mMAO‐7) at 140 °C. The phenyl series showed much higher catalytic activity, which ranged from 43.2 and 65.4 kg (mmol of Ti?h)?1, than the Me, iPr, and tBu series (19.2 and 36.6 kg (mmol of Ti?h)?1). Among the phenyl series, the bis(phenoxide) complex of 2 PhCl showed the highest activity of 65.4 kg (mmol of Ti?h)?1. Therefore, the catalyst precursors of the phenyl series were examined by treating them with a variety of alkylating reagents, such as trimethylaluminum (TMA), triisobutylaluminum (TIBA), and methylaluminoxane (MAO). In all cases, 2 PhCl produced the most catalytically active alkylated species, [Cp*Ti(2‐Ph? PhO)MeCl]. This enhancement was further supported by DFT calculations based on the simplified model with TMA.  相似文献   

12.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

13.
Polybutene-1 was synthesized stereoselectively with the precursorη5-(pentamethyl-cyclopentadienyl) tribenzyloxide titanium (Cp*Ti(OBz)3) and methylaluminoxane (MAO). The effects of polymerization conditions, trimethyl alumina (TMA) content in MAO and temperature on the crystalline and molecular weight of the products, and catalytic activity were investigated. The structural properties of the polybutene-1 were characterized with 13C NMR and WAXD.  相似文献   

14.
New Ti and Zr complexes that bear imine–phenoxy chelate ligands, [{2,4‐di‐tBu‐6‐(RCH=N)‐C6H4O}2MCl2] ( 1 : M=Ti, R=Ph; 2 : M=Ti, R=C6F5; 3 : M=Zr, R=Ph; 4 : M=Zr, R=C6F5), were synthesized and investigated as precatalysts for ethylene polymerization. 1H NMR spectroscopy suggests that these complexes exist as mixtures of structural isomers. X‐ray crystallographic analysis of the adduct 1 ?HCl reveals that it exists as a zwitterionic complex in which H and Cl are situated in close proximity to one of the imine nitrogen atoms and the central metal, respectively. The X‐ray molecular structure also indicates that one imine phenoxy group with the syn C?N configuration functions as a bidentate ligand, whereas the other, of the anti C?N form, acts as a monodentate phenoxy ligand. Although Zr complexes 3 and 4 with methylaluminoxane (MAO) or [Ph3C]+[B(C6F5)4]?/AliBu3 displayed moderate activity, the Ti congeners 1 and 2 , in association with an appropriate activator, catalyzed ethylene polymerization with high efficiency. Upon activation with MAO at 25 °C, 2 displayed a very high activity of 19900 (kg PE) (mol Ti)?1 h?1, which is comparable to that for [Cp2TiCl2] and [Cp2ZrCl2], although increasing the polymerization temperature did result in a marked decrease in activity. Complex 2 contains a C6F5 group on the imine nitrogen atom and mediated nonliving‐type polymerization, unlike the corresponding salicylaldimine‐type complex. Conversely, with [Ph3C]+[B(C6F5)4]?/AliBu3 activation, 1 exhibited enhanced activity as the temperature was increased (25–75 °C) and maintained very high activity for 60 min at 75 °C (18740 (kg PE) (mol Ti)?1 h?1). 1H NMR spectroscopic studies of the reaction suggest that this thermally robust catalyst system generates an amine–phenoxy complex as the catalytically active species. The combinations 1 /[Ph3C]+[B(C6F5)4]?/AliBu3 and 2 /MAO also worked as high‐activity catalysts for the copolymerization of ethylene and propylene.  相似文献   

15.
Monocyclopentadienyl titanium imidazolin‐2‐iminato complexes [Cp′Ti(L)X2] 1a (Cp′ = cyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), 1b (X = CH3); 2 (Cp′ = cyclopentadienyl, L = 1,3‐diisopropylimidazolin‐2‐imide, X = Cl); 3 (Cp′ = tert‐butylcyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), upon activation with methylaluminoxane (MAO) were active for the polymerization of ethylene and propylene and the copolymerization of ethylene and 1‐hexene. Catalysts derived from imidazolin‐2‐iminato tropidinyl titanium complex 4 = [(Trop)Ti(L)Cl2] (Trop = tropidinyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide) were much less active. Narrow polydispersities were observed for ethylene and propylene polymerization, but the copolymerization of ethylene/hexene led to bimodal molecular weight distributions. The productivity of catalysts derived from the dialkyl complex 1b activated with [Ph3C][B(C6F5)4] or B(C6F5)3 were less active for ethylene/hexene copolymerization but yielded ethylene/hexene copolymers of narrower molecular weight distributions than those derived from 1a/MAO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6064–6070, 2008  相似文献   

16.
A new type of half‐metallocene catalyst for the polymerization of ethylene and styrene, Cp*M((O)3O9Si7(c‐C5H9)7) (M = Ti ( 1) ; Zr ( 2 )), is prepared by the reaction of (HO)3O9Si7(c‐C5H9)7 with Cp*MCl3 in the presence of triethylamine. Complex 1 is stable to heat and air, but its heavier congener 2 is slightly air‐sensitive. The catalytic systems 1 /MMAO and 2 /MMAO, in which MMAO is modified methylaluminoxane, show good activities in ethylene polymerization, with that of 2 /MMAO greater than that of 1 /MMAO. Polyethylenes with bimodal molecular weight distributions were obtained. In addition, the catalytic system 1 /MMAO shows fairly good activities for the syndiospecific polymerization of styrene.  相似文献   

17.
The syndiotactic polystyrene polymerization activity of a fluorinated half‐sandwich complex, η5‐pentamethylcyclopentadienyl titanium trifluoride (Cp*TiF3), in the presence of relatively low amounts of methylalumoxane (MAO; MAO/Cp*TiF3 molar ratio = 200/1) and triisobutylaluminum, is significantly increased by the addition of phenylsilane in molar ratios to Cp*TiF3 ranging from about 300/1 to 600/1, if the phenylsilane is added to the monomer. Lower amounts of phenylsilane, such as a 100/1 molar ratio to Cp*TiF3, lead to a reduced polymerization activity in comparison with styrene without phenylsilane. A prereaction of phenylsilane with the catalyst mixture shows a behavior that is strongly dependent on the storage time of the composition and the temperature. A storage time of about 16 h is sufficient to reduce the polymerization conversion to about half of the original value. The results are discussed on the basis of a chain‐transfer reaction with phenylsilane and several catalyst complexes of different stabilities and activities, including an alkylation product of phenylsilane. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3476–3485, 2000  相似文献   

18.
Syndiospecific polymerization of styrene was catalyzed by monocyclopentadienyltributoxy titanium/methylaluminoxane [CpTi (OBu)3/MAO]. The atactic and syndiotactic polystyrenes were separated by extracting the former with refluxing 2-butanone. The activity and syndiospecificity of the catalyst were affected by changes in catalyst concentration and composition, polymerization temperature, and monomer concentration. Extremely high activity of 5 × 107 g PS (mol Ti mol S h)?1 with 99% yield of the syndiotactic product were achieved. The concentration of active species, [C*], has been determined by radiolabeling. The amount of the syndiospecific and nonspecific catalytic species, [C] and [C] respectively, correspond to 79 and 13% of the CpTi(OBu)3. The rate constants of propagation for C and C at 45°C are 10.8 and 2.0 (M s)?1, respectively, the corresponding rate constants for chain transfer to MAO are 6.2 × 10?4 and 4.3 × 10?4s?1. There was no deactivation of the catalytic species during a batch polymerization. The rate constant of chain transfer with monomer is 6.7 × 10?2 (M s)?1; the spontaneous β-hydride transfer rate constant is 4.7 × 10?2 s?1. The polymerization activity and stereospecificity of the catalyst are highest at 45°C, both decreasing with either higher or lower temperature. The stereoregular polymer have broad MW distributions, M?w/M?n = 2.8–5.7, and up to three crystalline modifications. The Tm of the s-PS polymerized at 0–90°C decreased from 261.8 to 241°C indicating thermally activated monomer insertion errors. The styrene polymerization behaviors were essentially insensitive to the dielectric constant of the medium.  相似文献   

19.
1,2-Propandiol reacts with Cp*Ti(CH3)3 by rapid liberation of methane to yield a dimetallic complex 6 of the net composition (Cp*Ti)2(1,2-propandiolato)3. The X-ray crystal structure analysis revealed an unsymmetrical bridging between the [Cp*Ti(1,2-propandiolato)] and [Cp*Ti(1,2-propandiolato)2] subunits. Cp*TiCl3 reacts with 1,2-propandiol in a 1:1 stoichiometry in the presence of excess pyridine by replacement of two chlorides by a 1,2-propandiolato ligand. The resulting product was isolated as a dimer 8 and characterized by X-ray diffraction. It exhibits a central Ti2O2 ring that was formed by bridging between the two [Cp*TiCl(1,2-propandiolato)] subunits using the oxygen atoms of the primary end of the ligand. From the reaction mixture a more complicated condensation product 9 was isolated in a small yield that contains two [Cp*TiCl(1,2-propandiolato)] units connected in a similar way by a Cp*-free [Ti(1,2-propandiolato)2] moiety as revealed by its X-ray crystal structure analysis. Complex [Cp*TiCl(1,2-propandiolato)]2 (8) gives an active catalyst for the syndiotactic polymerization of styrene upon treatment with excess methylalumoxane in toluene solution.  相似文献   

20.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号