首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rac-ethylenebis(indenyl)methylzirconium ‘cation’ (1), generated from rac-Et(Ind)2ZrMe2 and Ph3CB(C6F5)4, has recently been shown to be exceedingly active and stereoselective in propylene polymerization. The ethyl analog (2) can be produced by an alternate, efficient route involving a reaction between rac-Et(Ind)2ZrCl2 and AlEt3 (TEA), followed by addition of Ph3CB(C6F5)4. The use of excess AlEt3 serves both to alkylate the zirconium complex as well as to scavenge the system. The propylene polymerization activity of the ‘cation’ 2 is about 7000 times greater than the activity of rac-Et(Ind)2ZrCl2/methylaluminoxane (MAO) at Tp=?20°C. The related catalyst system rac-Me2Si(Ind)2ZrCl2/TEA/Ph3CB(C6F5)4 (3) was found to produce 98.3% i-PP with Tm 156.3°C and an activity of 1.8 × 109 g PP {(mol Zr) [C3H6]h}?1.  相似文献   

2.
The syndiotactic polystyrene polymerization activity of a fluorinated half‐sandwich complex, η5‐pentamethylcyclopentadienyl titanium trifluoride (Cp*TiF3), in the presence of relatively low amounts of methylalumoxane (MAO; MAO/Cp*TiF3 molar ratio = 200/1) and triisobutylaluminum, is significantly increased by the addition of phenylsilane in molar ratios to Cp*TiF3 ranging from about 300/1 to 600/1, if the phenylsilane is added to the monomer. Lower amounts of phenylsilane, such as a 100/1 molar ratio to Cp*TiF3, lead to a reduced polymerization activity in comparison with styrene without phenylsilane. A prereaction of phenylsilane with the catalyst mixture shows a behavior that is strongly dependent on the storage time of the composition and the temperature. A storage time of about 16 h is sufficient to reduce the polymerization conversion to about half of the original value. The results are discussed on the basis of a chain‐transfer reaction with phenylsilane and several catalyst complexes of different stabilities and activities, including an alkylation product of phenylsilane. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3476–3485, 2000  相似文献   

3.
The catalyst system i‐Pr(Cp)(9‐Flu)ZrCl2/methylaluminoxane was used for the synthesis of random syndiotactic copolymers of propylene with 1‐hexene, 1‐dodecene, and 1‐octadecene as comonomers. An investigation of the microstructure by 13C NMR spectroscopy revealed that the stereoregularity of the copolymers decreased because of an increase in skipped insertions in the presence of the higher 1‐olefin. The melting temperature of the copolymers, as measured by differential scanning calorimetry (DSC), decreased linearly with increasing comonomer content independently of the comonomer nature. During the DSC heating cycle, an exothermic peak indicating a crystallization process was observed. The decrease in the crystallization temperature with higher 1‐olefin content, measured by crystallization analysis fractionation, indicated a small but significant dependence on the nature of the comonomer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 128–140, 2002  相似文献   

4.
Homogeneous olefin polymerization catalysts are activated in situ with a co-catalyst ([PhN(Me)2-H]+[B(C6F5)4] or [Ph3C]+[B(C6F5)4]) in bulk polymerization media. These co-catalysts are insoluble in hydrocarbon solvents, requiring excess co-catalyst (>3 eq.). Feeding the activated species as a solution in an aliphatic hydrocarbon solvent may be advantageous over the in situ activation method. In this study, highly pure and soluble ammonium tetrakis(pentafluorophenyl)borates ([Me(C18H37)2N-H]+[B(C6F5)4] and [(C18H37)2NH2]+[B(C6F5)4]) containing neither water nor Cl salt impurities were prepared easily via the acid–base reaction of [PhN(Me)2-H]+[B(C6F5)4] and the corresponding amine. Using the prepared ammonium salts, the activation reactions of commercial-process-relevant metallocene (rac-[ethylenebis(tetrahydroindenyl)]Zr(Me)2 (1-ZrMe2), [Ph2C(Cp)(3,6-tBu2Flu)]Hf(Me)2 (3-HfMe2), [Ph2C(Cp)(2,7-tBu2Flu)]Hf(Me)2 (4-HfMe2)) and half-metallocene complexes ([(η5-Me4C5)Si(Me)2(κ-NtBu)]Ti(Me)2 (5-TiMe2), [(η5-Me4C5)(C9H9(κ-N))]Ti(Me)2 (6-TiMe2), and [(η5-Me3C7H1S)(C10H11(κ-N))]Ti(Me)2 (7-TiMe2)) were monitored in C6D12 with 1H NMR spectroscopy. Stable [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4] species were cleanly generated from 1-ZrMe2, 3-HfMe2, and 4-HfMe2, while the species types generated from 5-TiMe2, 6-TiMe2, and 7-TiMe2 were unstable for subsequent transformation to other species (presumably, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]-type species). [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]-type species were also prepared from 5-TiCl(Me) and 6-TiCl(Me), which were newly prepared in this study. The prepared [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4]-, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]-, and [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]-type species, which are soluble and stable in aliphatic hydrocarbon solvents, were highly active in ethylene/1-octene copolymerization performed in aliphatic hydrocarbon solvents.  相似文献   

5.
6.
The reaction of (η5-cyclopentadienyl)(η4-1,3-diphenylcyclobutadiene)cobalt ( I ) with excess Cr(CO)3py3 in BF3OEt2 yielded two identified heterometallic compounds. Compounds II and III with one and two phenyl rings complcxed with Cr(CO)3 fragment(s), respectively. These compounds were characterized by mass, infrared, 1H and 13C NMR spectra and elemental analysis. The crystal structure of II was determined. The Cr(CO)3 fragment bends inward toward the cyclobutadicne ring due to its electron-withdrawing ability, in accord with Hunter's postulate. A sharp line due to the non-complexed phenyl ring was observed in the 1HNMR spectrum, which implies that five protons are magnetically equivalent. The chemical shifts of two protons of the cyclobutadiene ring decreased from I to II then to III , possibly because of diminished deshielding effect from the phenyl ring in (arene)Cr(CO)3.  相似文献   

7.
8.
The syndiospecific polymerization of styrene was investigated with the fluorine‐containing half‐sandwich complexes η5‐pentamethylcyclopentadienyl titanium bis(trifluoroacetate) dimer, η5‐octahydrofluorenyl titanium tristrifluoro‐acetate, η5‐octahydrofluorenyl titanium dimethoxymonotrifluoroacetate, and η5‐octahydrofluorenyl titanium tris(pentafluorobenzoate) in comparison to known chloride and methoxide complexes in the presence of relatively low amounts of methylalumoxane and triisobutylaluminum. After the selection of effective reaction conditions for a solvent‐free polymerization, the following orders of decreasing polymerization activity of the titanium complexes can be observed: for pentamethylcyclopentadienyl compounds, Cp*Ti(OMe)3 > [Cp*Ti(OCOCF3)2]2O ≈ Cp*TiCl3, and for octahydrofluorenyl compounds, [656]Ti(OMe)3 > [656]Ti(OCOC6F5)3 > [656]Ti(OCH3)2(OCOCF3) > [656]Ti (OCOCF3)3. The [656]Ti complexes, showing the highest polymerization conversions at 70 °C and in comparison with the Cp* Ti compounds, turned out to be highly efficient catalysts for the syndiospecific styrene polymerization. The fluorine‐containing Cp* and [656]Ti complexes lead to much higher molecular weights than the chloride and methoxide compounds because of a reduction in chain‐limiting transfer reactions. The introduction of only one fluorine‐containing ligand into the coordination sphere of the metal compound is obviously sufficient for a significant increase in molecular weight. The active polymerization sites of the [656]Ti complexes with methylalumoxane and triisobutylaluminum are extremely stable during storage at room temperature in regard to their polymerization activity. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2428–2439, 2000  相似文献   

9.
In(C6F5)3 · CH3CN and In(C6F5)3 · glyme were synthesized from InCl3 and Cd(C6F5)2 in CH3CN or glyme in 43% and 35% yield, respectively. Replacement of CH3CN or (C2H5)2O by DMAP yielded the corresponding 1 : 1-adduct. [PNP][In(C6F5)4] was best prepared from the corresponding cesium salt which was best synthesized from the reaction of stoichiometric amounts of In(C6F5)3 · CH3CN, (CH3)3 SiC6F5 and CsF in good yield. [PNP][In(C6F5)4] crystallizes in the triclinic space group P 1, a = 1104.9(4) pm, b = 1442.4(6) pm, c = 1833.8(8) pm, α = 110.87(2)°, β = 92.04(3)°, γ = 96.55(3)°, Z = 2.  相似文献   

10.
11.
Racemic-anti-[ethylidene(1-η5-tetramethylcyclopentadienyl) (1-η5-indenyl)dimethyltitanium ( 6 ) has been synthesized and its molecular structure determined by x-ray diffraction methods. The two Ti?Me(1) and Ti?Me(2) units have bond distances differing by 0.08 Å and their proton NMR resonances are separated by over 1 ppm. Using this compound and methylaluminoxane (MAO) as the activator, at 25°C the 6 /MAO catalyst produced polypropylene having crystalline domain with physical crosslinks. The polymers obtained at lower polymerization temperatures are rheologically liquids. The behaviors of this catalyst system resembles closely the previously reported rac-[anti-ethylidene(1-η5-tetramethylcyclopentadienyl) (1-η5-indenyl)dichlorotitanium ( 4 )/MAO system. The structure of 6 determined here furnishes tangible support for the proposed two-state (isomeric)-switching propagation mechanism. Addition of MAO to 6 causes broadening of the Me(1) resonance in the 1H-NMR spectra, and 6 is decomposed by Ph3C+B(C6F5)-4. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
13.
Polymerization of (dimethylamino)ethyl methacrylate (DMAEMA) by lanthanocene amide complexes was investigated. The results show that (MeC5H4)2LnN(i‐Pr)2[tetrahydrofuran (THF)] (Ln = Y, Er, Yb), (MeC5H4)2YbNC5H10(HNC5H10) (HNC5H10 = piperidine), (MeC5H4)2YbNPh2(THF), and (t‐BuC5H4)2YbNPh2(THF) are effective initiators for the polymerization of DMAEMA, and the molecular weights of the polymers obtained exceed 100 × 103. The polymerization reactions can be varied over quite a broad range of temperatures from ?78 to 40 °C. The central metals and amido groups had a significant effect on the polymerization activity. The increasing activity of central metals and amido groups was Yb < Er < Y and NPh2 < N(i‐Pr)2 < NC5H10, respectively. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 612–616, 2002; DOI 10.1002/pola.10141  相似文献   

14.
Triphenoxymethane, tris(pentafluorophenoxy)methane, phenyl(difluoromethyl)ethers, and tetrakis(pentafluorophenoxy)ethene were prepared via carbenoid reactions of Zn(CF3)Br · 2 CH3CN and the corresponding phenol or the potassium or ammonium salts in the presence of the auxiliary acid BF3 · O(CH3)2. The products were identified by their melting and boiling points and in part by their NMR and mass spectra as well as elemental analysis.  相似文献   

15.
16.
The activity of the transition metal complex, such as Ni(2-ethyl hexanoate)2 (1), Co(2-ethyl hexanoate)2 (2), TiCl4 (3), or CpTiCl3 (4) (Cp = cyclopentadiene), in combination with MAO (methylaluminoxane), was investigated in the polymerization of norbornene. The Ni(II) complex 1 with MAO showed moderate activity to give 20.8 kgpolymer/molNi h, while the other three complexes 2-4 with MAO just showed trivial activity. Effects of the Lewis acids on the activation of the catalyst of 1/MAO were examined. The employment of B(C6F5)3 with 1/MAO significantly enhanced the activity to give up to around 133 kgpolymer/molNi h. The use of other borane compounds, such as B(C6H5)3 and BEt3, or the stronger electron acceptor BF3 · OBu2, with 1/MAO in place of B(C6F5)3 clearly showed the main functions of B(C6F5)3. The high Lewis acidity of B(C6F5)3 enabled it to develop matured active complexes, thus enhancing the activity. Several Ni(II) complexes were employed to determine whether their activity was comparable to that of complex 1 in norbornene polymerization. The study of the 1H and 13C NMR spectra of the polynorbornene produced with 1/B(C6F5)3/MAO showed that the initiation of addition polymerization occurred through the insertion of the exo face of the norbornene into the active complex. Effects of the variation in the polymerization variables, such as the levels of B(C6F5)3 and MAO, temperature, and solvent, on the polymerization were discussed.  相似文献   

17.
N‐Arylcyano‐β‐diketiminate methallyl nickel complexes activated with B(C6F5)3 were used in the polymerization of ethylene. The microstructure analysis of obtained polyethylene (PE) was done by differential scanning calorimetry and 13C nuclear magnetic resonance (NMR). The branched polymer structures produced by these catalysts were attributed to one step isomerization mechanism of the catalyst along the polymer chain. The ortho or para position of the cyano group with co‐ordinated B(C6F5)3 in both methallyl nickel catalysts influenced the polymer molecular weight, branching, and consequently melting and crystallization temperatures. NMR spectroscopic studies showed predominantly the formation of methyl branches in the obtained PE. Catalysts under study gave linear low‐density PEs with good crystallinities at temperatures of reaction between 50 °C and 70 °C at moderate pressures (12.3 atm). A propylene–ethylene copolymer produced by the metallocene catalyst had the same concentration of branches as the PE synthesized from methallyl nickel/B(C6F5)3. Comparing the two polyolefins with the same degree of branching, it was observed that the polymer obtained with the nickel catalyst proved to be twice more crystalline and had greater Tm. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 452–458  相似文献   

18.
Pentafluorophenyliodine(III) Compounds. 2. Fluorine-Aryl Substitution Reactions on Iodinetrifluoride: Synthesis of Pentafluorophenyliodinedifluoride C6F5IF2 and Bis(pentafluorophenyl)iodonium Pentafluorophenylfluoroborates[(C6F5)2I]+[(C6F5)nBF4?n]? Mono- and disubstitution can be achieved in the fluorine-aryl substitution reaction on the low-temperature phase IF3 in CH2Cl2 at ?78°C depending on the aryl transfer reagent. With B(C6F5)3 [(C6F5)2I]+ [(C6F5)nBF4?n]? (68% yield) and with Cd(C6F5)2 C6F5IF2 (97% yield) is obtained whereas with C6F5SiMe3 no fluorine-aryl substitution takes place on IF3 even under basic conditions (EtCN or F? addition). At ?78°C in EtCN solution IF3 does not disproportionate but attacks the solvent under formation of HF.  相似文献   

19.
Treatment of Pd(PPh3)4 with 5‐bromo‐pyrimidine [C4H3N2Br] in dichloromethane at ambient temperature cause the oxidative addition reaction to produce the palladium complex [Pd(PPh3)21‐C4H3N2)(Br)], 1 , by substituting two triphenylphosphine ligands. In acetonitrile solution of 1 in refluxing temperature for 1 day, it do not undergo displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐(η1‐C4H3N2)}2, or bromide ligand to form chelating pyrimidine complex [Pd(PPh3)22‐C4H3N2)]Br. Complex 1 reacted with bidentate ligand, NH4S2CNC4H8, and tridentate ligand, KTp {Tp = tris(pyrazoyl‐1‐yl)borate}, to obtain the η2‐dithiocarbamate η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐S2CNC4H8)], 4 and η2‐Tp η1‐pyrimidine complex [Pd(PPh3)(η1‐C4H3N2)(η2‐Tp)], 5 , respectively. Complexes 4 and 5 are characterized by X‐ray diffraction analyses.  相似文献   

20.
The effect of the kind of transition‐metal catalyst on the extent of comonomer insertion in the syndiospecific complex‐coordinative copolymerization of styrene and para‐methylstyrene has been investigated. The results for the influence of the polymerization conditions have shown that there is no real difference between solution copolymerization in toluene and solvent‐free styrene copolymerization in bulk, with respect to the reactivity ratio for para‐methylstyrene (r2), under comparable conditions in the presence of methylaluminoxane and triisobutylaluminum and at low polymerization conversions. All the investigated catalysts lead to a preferred incorporation of para‐methylstyrene into the polymer chain in comparison with styrene and over the whole range of monomer compositions. The increasing capability of the different catalysts to provide copolymers with enhanced para‐methylstyrene concentrations can be summarized by the increasing r2 values for the copolymerization in bulk as follows: η5‐pentamethylcyclopentadienyl titanium trichloride < η5‐octahydrofluorenyl titanium trimethoxide < η5‐octahydrofluorenyl titanium tristrifluoroacetate < η5‐cyclopentadienyl titanium(N,N‐dicyclohexylamido)dichloride < η5‐cyclopentadienyl titanium trichloride. For a correlation between the catalyst structure and the comonomer insertion, the catalysts can be described by electronic effects (electrostatic charge of the transition‐metal atom) and steric effects (minimum structural cone angle). The results show that the steric properties of the transition‐metal complexes have the most important effect on the insertion of para‐methylstyrene into the copolymer. If the minimum structural cone angle of the ligand of the transition‐metal catalyst decreases, the incorporation of the comonomer para‐methylstyrene increases significantly. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2061–2067, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号