首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have produced and investigated an unique boron oxide cluster, B4O2(-), using photoelectron spectroscopy and ab initio calculations. Relatively simple and highly vibrationally resolved PES spectra were obtained at two photon energies (355 and 193 nm). The electron affinity of neutral B4O2 was measured to be 3.160 +/- 0.015 eV. Two excited states were observed for B4O2 at excitation energies of 0.48 and 0.83 eV above the ground state. Three vibrational modes were resolved in the 355 nm spectrum for the ground state of B4O2 with frequencies of 350 +/- 40, 1530 +/- 30, and 2040 +/- 30 cm(-1). Ab initio calculations showed that neutral B4O2 (D(infinity h), 3sigma(g)-) and anionic B4O2(-) (D(infinity h), 2pi(u)) both possess highly stable linear structures (O[triple bond]B-B=B-B[triple bond]O), which can be viewed as a B2 dimer bonded to two terminal boronyl groups. The lowest nonlinear structures are at least 1.5 eV higher in energy. The calculated electron detachment energies from the linear B4O2- and the vibrational frequencies agree well with the experimental results. The three observed vibrational modes are due to the B-B, B=B, and B[triple bond]O symmetric stretching vibrations, respectively, in the linear B2(BO)2. Chemical bonding analyses revealed that the HOMO of B2(BO)2, which is half-filled, is a bonding pi orbital in the central B2 unit. Thus, adding two electrons to B2(BO)2 leads to a B[triple bond]B triple bond in [O[triple bond]B-B[triple bond]B-B[triple bond]O]2-. Possibilities for stabilizing B2(BO)2(2-) in the form of B2(BO)2Li2 are considered computationally and compared with other valent isoelectronic, triple bonded species, B2H2Li2, B2H2(2-), and C2H2. The high stability of B2(BO)2(2-) suggests that it may exist as a viable building block in the condensed phase.  相似文献   

2.
The blue copper complex [Cu2(H2O)2(phen)2(OH)2][Cu2(phen)2(OH)2(CO3)2] · 10 H2O, which was prepared by reaction of 1,10‐phenanthroline monohydrate, CuCl2 · 2 H2O and Na2CO3 in the presence of succinic acid in CH3OH/H2O at pH = 13.0, crystallized in the triclinic space group P1 (no. 2) with cell dimensions: a = 9.515(1) Å, b = 12.039(1) Å, c = 12.412(2) Å, α = 70.16(1)°, β = 85.45(1)°, γ = 81.85(1)°, V = 1323.2(2) Å3, Z = 1. The crystal structure consists of dinuclear [Cu2(H2O)2(phen)2(OH)2]2+ complex cations, dinuclear [Cu2(phen)2(OH)2(CO3)2]2– complex anions and hydrogen bonded H2O molecules. In both the centrosymmetric dinuclear cation and anion, the Cu atoms are coordinated by two N atoms of one phen ligand, three O atoms of two μ‐OH groups and respectively one H2O molecule or one CO32– anion to complete distorted [CuN2O3] square‐pyramids with the H2O molecule or the CO32– anion at the apical position (equatorial d(Cu–O) = 1.939–1.961 Å, d(Cu–N) = 2.026–2.051 Å and axial d(Cu–O) = 2.194, 2.252 Å). Two adjacent [CuN2O3] square pyramids are condensed via two μ‐OH groups. Through the interionic hydrogen bonds, the dinuclear cations and anions are linked into 1D chains with parallel phen ligands on both sides. Interdigitation of phen ligands of neighboring 1D chains generated 2D layers, between which the hydrogen bonded water molecules are sandwiched.  相似文献   

3.
4.
5.
6.
A uranyl triazole (UO(2))(2)[UO(4)(trz)(2)](OH)(2) (1) (trz = 1,2,4-triazole) was prepared using a mild solvothermal reaction of uranyl acetate with 1,2,4-triazole. Single-crystal X-ray diffraction analysis of 1 revealed it contains sheets of uranium-oxygen polyhedra and that one of the U(VI) cations is in an unusual coordination polyhedron that is intermediate between a tetraoxido core and a uranyl ion. This U(VI) cation also forms cation-cation interactions (CCIs). Infrared, Raman, and XPS spectra are provided, together with a thermogravimetric analysis that demonstrates breakdown of the compound above 300 °C. The UV-vis-NIR spectrum of 1 is compared to those of another compound that has a range of U(VI) coordination enviromments.  相似文献   

7.
The photolysis of [P(2)N(2)]TaMe(3) ([P(2)N(2)] = PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh) produces [P(2)N(2)]Ta=CH(2)(Me) as the major product. The thermally unstable methylidene complex decomposes in solution in the absence of trapping agents to unidentified products. However, in the presence of ethylene [P(2)N(2)]Ta=CH(2)(Me) is slowly converted to [P(2)N(2)]Ta(C(2)H(4))Et, with [P(2)N(2)]Ta(C(2)H(4))Me observed as a minor product. A mechanistic study suggests that the formation of [P(2)N(2)]Ta(C(2)H(4))Et results from the trapping of [P(2)N(2)]TaEt, formed by the migratory insertion of the methylene moiety into the tantalum-methyl bond. The minor product, [P(2)N(2)]Ta(C(2)H(4))Me, forms from the decomposition of a tantalacyclobutane resulting from the addition of ethylene to [P(2)N(2)]Ta=CH(2)(Me) and is accompanied by the production of an equivalent of propylene. Pure [P(2)N(2)]Ta(C(2)H(4))Et can be synthesized by hydrogenation of [P(2)N(2)]TaMe(3) in the presence of PMe(3), followed by the reaction of ethylene with the resulting trihydride. Crystallographic and NMR data indicate the presence of a beta-agostic interaction between the ethyl group and tantalum center in [P(2)N(2)]Ta(C(2)H(4))Et. Partially deuterated analogues of [P(2)N(2)]Ta(C(2)H(4))Et show a large isotopic perturbation of resonance for both the beta-protons and the alpha-protons of the ethyl group, indicative of an equilibrium between a beta-agostic and an alpha-agostic interaction for the ethyl group in solution. An EXSY spectrum demonstrates that an additional fluxional process occurs that exchanges all of the (1)H environments of the ethyl and ethylene ligands. The mechanism of this exchange is believed to involve the direct transfer of the beta-agostic hydrogen atom from the ethyl group to the ethylene ligand, via the so-called beta-hydrogen transfer process.  相似文献   

8.
Here it is shown that the chemical nature of outer organic surfactant layers, used to stabilize inorganic nanoparticles (NPs), is a key factor controlling solubility in a mixed liquid CO(2)-heptane (10% vol) solvent.  相似文献   

9.
The synthesis of Ru(C2H4)(CO)2(dtbpe) (dtbpe = tBu2PC2H4PtBu2), then green [Ru(CO)2(dtbpe)]n is described. In solution, n = 1, while in the solid state, n = 2; the dimer has two carbonyl bridges. DFTPW91, MP2, and CCSD(T) calculations show that the potential energy surface for bending one carbonyl out of the RuP2C(O) plane is essentially flat. Ru(CO)2(dtbpe) reacts rapidly in benzene solution to oxidatively add the H-E bond of H2, HCl, HCCR (R = H, Ph), [HOEt2]BF4, and HSiEt3. The H-C bond of C6HF5 oxidatively adds at 80 degrees C. CO adds, as does the C=C bond of H2C=CHX (X = H, F, Me). The following do not add: N2, THF, acetone, H3COH, and H2O.  相似文献   

10.
11.
12.
A novel heterometallic supramolecular network [[Rh(2)(O(2)CCF(3))(4)].micro(2)-OCMe(2).[Cu(4)(O(2)CCF(3))(4)]](2)( infinity ) has been prepared by codeposition of the volatile mono(acetone) adduct [Rh(2)(O(2)CCF(3))(4).eta(1)-OCMe(2)](2) and copper(I) trifluoroacetate, [Cu(4)(O(2)CCF(3))(4)]. The product is of interest from the viewpoints of gas-phase supramolecular synthesis and a rare bridging coordination mode of acetone. It has been fully characterized by IR and NMR spectroscopy, elemental analysis, and X-ray diffraction. An X-ray structure revealed a layered 2D arrangement of the heterometallic [[Rh(2)(O(2)CCF(3))(4)].micro(2)-OCMe(2).[Cu(4)(O(2)CCF(3))(4)]] units built by axial intermolecular interactions of the open electrophilic Rh(II) and Cu(I) centers and O-atoms of neighboring carboxylate groups. The coordination of the acetone molecules within the [[Rh(2)(O(2)CCF(3))(4)].micro(2)-OCMe(2).[Cu(4)(O(2)CCF(3))(4)]] unit is asymmetric with the Rh-O and Cu-O distances being 2.2173(15) and 2.7197(17) A, respectively. This work shows the potential of gas-phase deposition that may provide additional possibilities in supramolecular synthesis by utilizing intermolecular interactions and coordination bonds in a new way compared with conventional solution chemistry.  相似文献   

13.
Yoon S  Lippard SJ 《Inorganic chemistry》2006,45(14):5438-5446
Carboxylate-bridged diiron(II) centers activate dioxygen for the selective oxidation of hydrocarbon substrates in bacterial multicomponent monooxygenases. Synthetic analogues of these systems exist in which substrate fragments tethered to the diiron(II) core through attachment to an N-donor ligand are oxidized by transient species that arise following the introduction of O2 into the system. The present study describes the results of experiments designed to probe mechanistic details of these oxidative N-dealkylation reactions. A series of diiron(II) complexes with ligands N,N-(4-R-Bn)Bnen, where en is ethylenediamine, Bn is benzyl, and R-Bn is benzyl with a para-directing group R = Cl, F, CH3, t-Bu, or OCH3, were prepared. A Hammett plot of the oxygenation product distributions of these complexes, determined by gas chromatographic analysis, reveals a small positive slope of rho = +0.48. Kinetic isotope effect (KIE(intra)) values for oxygenation of [Fe2(mu-O2CAr(Tol))2(O2CAr(Tol))2(N,N-(C6H5CDH)2en)2] and [Fe2(mu-O2CAr(Tol))2(O2CAr(Tol))2(N,N-(C6H5CD2)(C6H5CH2)en)2] are 1.3(1) and 2.2(2) at 23 degrees C, respectively. The positive slope rho and low KIE(intra) values are consistent with a mechanism involving one-electron transfer from the dangling nitrogen atom in N,N-Bn2en to a transient electrophilic diiron intermediate, followed by proton transfer and rearrangement to eliminate benzaldehyde.  相似文献   

14.
The acetylacetonate complexes [Ni(2)L(1)(acac)(MeOH)] x H(2)O, 1 x H(2)O and [Ni(2)L(3)(acac)(MeOH)] x 1.5H(2)O, 2 x 1.5H(2)O (H(3)L(1) = (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine and H(3)L(3) = (2-(5-bromo-2-hydroxyphenyl)-1,3-bis[4-(5-bromo-2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) were prepared and fully characterised. Their crystal structures show that they are dinuclear complexes, extended into chains by hydrogen bond interactions. These compounds were used as starting materials for the isolation of the corresponding [Ni(2)HL(x)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x n MeOH and [Ni(2)HL(x)(O(2)CCH(2)CO(2))(H(2)O)]x nH(2)O dicarboxylate complexes (x = 1, 3; n = 1-3). The crystal structures of [Ni(2)HL(1)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x MeOH, 3 x MeOH, [Ni(2)HL(3)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x 3 MeOH, 4 x 3 MeOH and [Ni(2)HL(1)(O(2)CCH(2)CO(2))(H(2)O)] x 2.5H(2)O x 0.25 MeOH x MeCN, 5 x 2.5H(2)O x 0.25 MeOH x MeCN, were solved. Complexes 3-5 show dinuclear [Ni(2)HL(x)(dicarboxylate)(H(2)O)] units, expanded through hydrogen bonds that involve carboxylate and water ligands, as well as solvate molecules. The variable temperature magnetic susceptibilities of all the complexes show an intramolecular ferromagnetic coupling between the Ni(II) ions, which is attempted to be rationalized by comparison with previous results and in the light of molecular orbital treatment. Magnetisation measurements are in accord with a S = 2 ground state in all cases.  相似文献   

15.
16.
17.
Mn(III)-Ni(II)-Mn(III) linear-type trinuclear complexes bridged by oximate groups were selectively synthesized by the assembly reaction of [Mn2(5-Rsaltmen)2(H2O)2](ClO4)2 (5-Rsaltmen2-=N,N'-(1,1,2,2-tetramethylethylene) bis(5-R-salicylideneiminate); R=Cl, Br) with [Ni(pao)2(phen)] (pao-=pyridine-2-aldoximate; phen=1,10-phenanthroline) in methanol/water: [Mn2(5-Rsaltmen)2Ni(pao)2(phen)](ClO4)2 (R=Cl, 1; R=Br, 2). Structural analysis revealed that the [Mn(III)-ON-Ni(II)-NO-Mn(III)] skeleton of these trimers is in every respect similar to the repeating unit found in the previously reported series of 1D materials [Mn2(saltmen)2Ni(pao)2(L1)2](A)(2) (L(1)=pyridine, 4-picoline, 4-tert-butylpyridine, N-methylimidazole; A=ClO4-, BF4-, PF6-, ReO4-). Recently, these 1D compounds have attracted a great deal of attention for their magnetic properties, since they exhibit slow relaxation of the magnetization (also called single-chain magnet (SCM) behavior). This unique magnetic behavior was explained in the framework of Glauber's theory, generalized for chains of ferromagnetically coupled anisotropic spins. Thus, in these 1D compounds, the [Mn(III)-ON-Ni(II)-NO-Mn(III)] unit was considered as an S(T)=3 anisotropic spin. Direct-current magnetic measurements on 1 and 2 confirm their S(T)=3 ground state and strong uniaxial anisotropy (D/k(B) approximately -2.4 K), in excellent agreement with the magnetic characteristic deduced in the study on the SCM series. The ac magnetic susceptibility of these trimers is strongly frequency-dependent and characteristic of single-molecule magnet (SMM) behavior. The relaxation time tau shows a thermally activated (Arrhenius) behavior with tau0 approximately 1x10(-7) s and Delta(eff)/k(B) approximately 18 K. The effective energy barrier for reversal of the magnetization Delta(eff) is consistent with the theoretical value (21 K) estimated from |D| S2T. The present results reinforce consistently the interpretation of the SCM behavior observed in the [Mn2(saltmen)2Ni(pao)2(L1)2](A)2 series and opens new perspectives to design single-chain magnets.  相似文献   

18.
Under H(2), the radical cyclization of appropriate dienes can be catalyzed by cobaloximes. H? can be abstracted from an intermediate (presumably a cobalt hydride) by trityl radicals (Ar(3)C?) or by TEMPO. The rate-determining step in these reactions is the uptake of H(2), which is second order in cobalt and first order in hydrogen; the third-order rate constant is 106(3) M(-2)·s(-1).  相似文献   

19.
6-Chloro-2(2H)-pyranone, which can be prepared in high yield from commercially available trans-glutaconic acid, undergoes facile Pd/Cu-catalyzed reaction with various 1-alkynes to give rise to the corresponding 6-(1-alkynyl)-2(2H)-pyranones in moderate to good yields. These last hitherto unknown compounds have been used as direct precursors to 6-alkyl- and 6-[(Z)-1-alkenyl]-2(2H)-pyranones.  相似文献   

20.
The title anion was synthesized by a reaction of nido-Ge(9)(4-), made from K(4)Ge(9) dissolved in ethylenediamine and 2,2,2-crypt(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), with BiPh(3). It was structurally characterized in (K-2,2,2-crypt)(2)[Ge(9)(BiPh(2))(2)].en which was crystallized from the solution. The anion is a monocapped square antiprism of Ge(9) with two diphenylbismuth ligands exo-bonded to opposite vertexes of the open face of the cluster. This is the first example where covalently exo-bonded ligands are attached to a deltahedral cluster that can exist without them as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号