共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chemical physics letters》1985,115(2):180-186
Rate coefficients for the reaction of CH3O with NO2 were measured over the temperature range 220–473 K and over the pressure range 0.6–4.0 Torr using a flow reactor apparatus with laser-induced fluorescence (LIF) detection of CH3O. The results were fitted to extract recombination and disproportionation rate constants. Combined with previous indirect studies at higher pressure, they suggest that the reaction proceeds not through a single complex but by separate paths, with disproportionation occurring by direct H-atom abstraction. 相似文献
2.
The reactants, products, and transition states of the CH2O + NO2 reaction on the ground electronic potential energy surface have been searched at both B3LYP/6?311+G(d,p) and MPW1PW91/6?311+G(3df,2p) levels of theory. The forward and reverse barriers are further improved by a modified Gaussian‐2 method. The theoretical rate constants for the two most favorable reaction channels 1 and 2 producing CHO + cis‐HONO and CHO + HNO2, respectively, have been calculated over the temperature range from 200 to 3000 K using the conventional and variational transition‐state theory with quantum‐mechanical tunneling corrections. The former product channel was found to be dominant below 1500 K, above which the latter becomes competitive. The predicted total rate constants for these two product channels can be presented by kt (T) = 8.35 × 10?11 T6.68 exp(?4182/T) cm3/(mol s). The predicted values, which include the significant effect of small curvature tunneling corrections, are in quantitative agreement with the available experimental data throughout the temperature range studied (390–1650 K). © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 184–190, 2003 相似文献
3.
The rate constant for the reaction CH3O2 + NO2 → (products) has been measured directly by flash photolysis and kinetic spectroscopy. At room temperature and at total pressures between 53 and 580 Torr, k3 = (9.2 ± 0.4) × 108 liter/mole sec so that the rate of formation of the probable primary product peroxymethyl nitrate (CH3O2NO2) may be significant in urban atmospheres. 相似文献
4.
The reaction of hydrogen atoms with methyl nitrite was studied in a fast-flow system using photoionization mass spectrometry and excess atomic hydrogen. The associated bimolecular rate coefficient can be expressed by in the temperature range of 223-398°K. NO, CH3OH, CH4, C2H6, CH2O, and H2O are the main products; OH and CH3 radicals were detectable intermediates. The mechanism was deduced from the observed product yields using normal and deuterated reactants. The primary reaction steps were identified as followed by a rapid unimolecular decomposition of CH2ONO into CH2O and NO. Since the extent of reaction channel (1b) could not be determined independently, only extreme limits could be obtained for the individual contributions of the two channels of reaction (3) which follows the generation of CH3O radicals: The most probable values, k3a/k3 = 0.31 ± 0.30 and k3b/k3 = 0.69 ± 0.30, support the previous results on this reaction, although the range of uncertainties is much greater here. 相似文献
5.
Jens Sehested Ole John Nielsen Carlos A. Rinaldi Silvia I. Lane Juan Carlos Ferrero 《国际化学动力学杂志》1996,28(8):579-588
The reaction of CF3 with NO2 was studied at 296 ± 2K using two different absolute techniques. Absolute rate constants of (1.6 ± 0.3) × 10−11 and (2.1 −0.3+07) × 10−11 cm3 molecule−1 s−1 were derived by IR fluorescence and UV absorption spectroscopy, respectively. The reaction proceeds via two reaction channels: CF3 + NO2 → CF2O + FNO, (70 ± 12)% and CF3 + NO2 → CF3O + NO, (30 ± 12)%. An upper limit of 11% for formation of other reaction products was determined. The overall rate constant was within the uncertainty independent of total pressure between 0.4 to 760 torr. © 1996 John Wiley & Sons, Inc. 相似文献
6.
7.
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the reaction of O(3P) with CF3NO (k2) as a function of temperature. Our results are described by the Arrhenius expression k2(T) = (4.54 ± 0.70) × 10?12 exp[(?560± 46)/T] cm3molecule?1 s?1 (243 K ? T ? 424 K); errors are 2σ and represent precision only. The O(3P) + CF3NO reaction is sufficiently rapid that CF3NO cannot be employed as a selective quencher for O2(a1Δg) in laboratory systems where O(3P) and O2(a1Δg) coexist, and where O(3P) kinetics are being investigated. © 1995 John Wiley & Sons, Inc. 相似文献
8.
Quasi-classical trajectory (QCT) calculations on a model potential energy surface (PES) show strong deviations from statistical Rice-Ramsperger-Kassel-Marcus (RRKM) rate theory for the decomposition reaction (1) CH3OONO* --> CH3O + NO2, where the highly excited CH3OONO* was formed by (2) CH3O2 + NO --> CH3OONO*. The model PES accurately describes the vibrational frequencies, structures, and thermochemistry of the cis- and trans-CH3OONO isomers; it includes cis-trans isomerization in addition to reactions 1 and 2 but does not include nitrate formation, which is too slow to affect the decay rate of CH3OONO*. The QCT results give a strongly time-dependent rate constant for decomposition and damped oscillations in the decomposition rate, not predicted by statistical rate theory. Anharmonicity is shown to play an important role in reducing the rate constant by a factor of 10 smaller than predicted using classical harmonic RRKM theory (microcanonical variational transition state theory). Master equation simulations of organic nitrate yields published previously by two groups assumed that RRKM theory is accurate for reactions 1 and 2 but required surprising parametrizations to fit experimental nitrate yield data. In the present work, it is hypothesized that the non-RRKM rate of reaction (1) and vibrational anharmonicity are at least partly responsible for the surprising parameters. 相似文献
9.
The molecular modulation spectroscopic technique was employed to study the kinetics of NO3 radicals produced in the 253.7 nm photolysis of flowing gas mixtures of HNO3/CH4/O2 at room temperature. By computer fitting of the NO3 temporal behavior, a rate coefficient of (2.3 ± 0.7) × 10?12 cm3 molecule?1 s?1 was obtained for the reaction between NO3 and CH3O2 at 298 K. 相似文献
10.
The important stationary points on the potential energy surface of the reaction CH(3)O(2) + NO have been investigated using ab initio and density functional theory techniques. The optimizations were carried out at the B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) levels of theory while the energetics have been refined using the G2MP2, G3//B3LYP, and CCSD(T) methodologies. The calculations allow the proper characterization of the transition state barriers that determine the fate of the nascent association conformeric minima of methyl peroxynitrite. The main products, CH(3)O + NO(2), are formed through either rearrangement of the trans-conformer to methyl nitrate and its subsequent dissociation or via the breaking of the peroxy bond of the cis-conformer to CH(3)O + NO(2) radical pair. The important consequences of the proposed mechanism are (a) the allowance on energetic grounds for nitrate formation parallel to radical propagation under favorable external conditions and (b) the confirmation of the conformational preference of the homolytic cleavage of the peroxy bond, discussed in previous literature. 相似文献
11.
The reaction of NO with the peroxy radical CFCl2CH2O2, and with CH3CFClO2 was investigated at 8(SINGLEBOND)20 torr and 263(SINGLEBOND)321 K by UV flash photolysis of CFCl2CH3/O2/NO gas mixtures. The kinetics were determined from observations of the growth rate of the CFCl2CH2O radical and the decay rate of NO by time-resolved mass spectrometry. The temperature dependence of the bimolecular rate coefficients, with their statistical uncertainties, can be expressed as (2.9 ± 0.7) e(435±96)/T × 10−12 cm3 molecule −1s−1, or (1.3 ± 0.2) (T/300)&minus(1.5±0.2) × 10−11 cm3 molecule−1 s−1 for NO + CFCl2CH2O2, and (3.3 ± 0.6)e(516±73)/T × 10−12 cm3 molecule−1 s−1, or (2.0 ± 0.3) (T/300)&minus(1.8±0.3) × 10−11 cm3 molecule−1 s−1 for NO + CH3CFClO2. No pressure dependence of the rate coefficients could be detected over the 8(SINGLEBOND)20 torr range investigated. © 1996 John Wiley & Sons, Inc. 相似文献
12.
The reaction mechanism of (CH3)3CO(.) radical with NO is theoretically investigated at the B3LYP/6-31G* level. The results show that the reaction is multi-channel in the single state and triplet state. The potential energy surfaces of reaction paths in the single state are lower than that in the triple state. The balance reaction: (CH3)3CONO←→ (CH3)3CO(.)+NO, whose potential energy surface is the lowest in all the reaction paths, makes the probability of measuring (CH3)3CO(.) radical increase. So NO may be considered as a stabilizing reagent for the (CH3)3CO(.)radical. 相似文献
13.
The CH3S* + O2 reaction system is considered an important process in atmospheric chemistry and in combustion as a pathway for the exothermic conversion of methane-thiyl radical, CH3S*. Several density functional and ab initio computational methods are used in this study to determine thermochemical parameters, reaction paths, and kinetic barriers in the CH3S* + O2 reaction system. The data are also used to evaluate feasibility of the DFT methods for higher molecular weight oxy-sulfur hydrocarbons, where sulfur presents added complexity from its many valence states. The methods include: B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), B3PW91/6-311++G(3df,2p), G3MP2, and CBS-QB3. The well depth for the CH3S* + 3O2 reaction to the syn-CH3SOO* adduct is found to be 9.7 kcal/mol. Low barrier exit channels from the syn-CH3SOO* adduct include: CH2S + HO2, (TS6, E(a) is 12.5 kcal/mol), CH3 + SO2 via CH3SO2 (TS2', E(a) is 17.8) and CH3SO + O (TS17, E(a) is 24.7) where the activation energy is relative to the syn-CH3SOO* stabilized adduct. The transition state (TS5) for formation of the CH3SOO adduct from CH3S* + O2 and the reverse dissociation of CH3SOO to CH3S* + O2 is relatively tight compared to typical association and simple bond dissociation reactions; this is a result of the very weak interaction. Reverse reaction is the dominant dissociation path due to enthalpy and entropy considerations. The rate constants from the chemical activation reaction and from the stabilized adduct to these products are estimated as functions of temperature and pressure. Our forward rate constant and CH3S loss profile are in agreement with the experiments under similar conditions. Of the methods above, the G3MP2 and CBS-QB3 composite methods are recommended for thermochemical determinations on these carbon-sulfur-oxygen systems, when they are feasible. 相似文献
14.
15.
Using relative rate methods, rate constants have been measured for the gas-phase reactions of 3-methylfuran with NO3 radicals and O3 at 296 ± 2 K and atmospheric pressure of air. The rate constants determined were (1.31 ± 0.461) × 10−11 cm3 molecule−1 s−1 for the NO3 radical reaction and (2.05 ± 0.52) × 10−17 cm3 molecule−1 s−1 for the O3 reaction, where the indicated errors include the estimated overall uncertainties in the rate constants for the reference reactions. Based on the cyclohexanone plus cyclohexanol yield in the presence of sufficient cyclohexane to scavenge > 95% of OH radicals formed, it is estimated that the O3 reaction leads to the formation of OH radicals with a yield of 0.59, uncertain to a factor of ca. 1.5. In the troposphere, 3-methylfuran will react dominantly with the OH radical during daylight hours, and with the NO3 radical during nighttime hours for nighttime NO3 radical concentrations > 107 molecule cm −3. © 1996 John Wiley & Sons, Inc. 相似文献
16.
The kinetics of the reactions CH3O + Cl → H2CO + HCl (1) and CH3O + ClO → H2CO + HOCl (2) have been studied using the discharge-flow techniques. CH3O was monitored by laser-induced fluorescence, whereas mass spectrometry was used for the detection or titration of other species. The rate constants obtained at 298 K are: k1 = (1.9 ± 0.4) × 10−11 cm3 molecule−1 s−1 and k2 = (2.3 ± 0.3) × 10−11 cm3 molecule−1 s−1. These data are useful to interpret the results of the studies of the reactions of CH3O2 with Cl and ClO which, at least partly, produce CH3O radicals. © 1996 John Wiley & Sons, Inc. 相似文献
17.
Kovács G Zádor J Farkas E Nádasdi R Szilágyi I Dóbé S Bérces T Márta F Lendvay G 《Physical chemistry chemical physics : PCCP》2007,9(31):4142-4154
The reactions CH(3)CO + O(2)--> products (1), CH(3)CO + O(2)--> OH +other products (1b) and CH(3)C(O)CH(2) + O(2)--> products (2) have been studied in isothermal discharge flow reactors with laser induced fluorescence monitoring of OH and CH(3)C(O)CH(2) radicals. The experiments have been performed at overall pressures between 1.33 and 10.91 mbar of helium and 298 +/- 1 K reaction temperature. OH formation has been found to be the dominant reaction channel for CH(3)CO + O(2): the branching ratio, Gamma(1b) = k(1b)/k(1), is close to unity at around 1 mbar, but decreases rapidly with increasing pressure. The rate constant of the overall reaction, k(2), has been found to be pressure dependent: the fall-off behaviour has been analysed in comparison with reported data. Electronic structure calculations have confirmed that at room temperature the reaction of CH(3)C(O)CH(2) with O(2) is essentially a recombination-type process. At high temperatures, the further reactions of the acetonyl-peroxyl adduct may yield OH radicals, but the most probable channel seems to be the O(2)-catalysed keto-enol transformation of acetonyl. Implications of the results for atmospheric modelling studies have been discussed. 相似文献
18.
Jens Sehested Lene K. Christensen Ole J. Nielsen Merete Bilde Timothy J. Wallington William F. Schneider John J. Orlando Geoffrey S. Tyndall 《国际化学动力学杂志》1998,30(7):475-489
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998 相似文献
19.
The kinetics of the reaction of O(3P) atoms with acetone were investigated using fast flow methods. The reaction was studied over a temperature range of 298 to 478°K. The specific rate constant obtained was (1.9 ± 0.4) × 1012 exp(—5040 ± 180/1.987 T) cm3/mol·sec. The observation of a sizable primary H/D kinetic isotope effect in comparing rates of CH3COCH3 and CD3COCD3 led to the conclusion that the major reaction channel involves H atom abstraction, namely, The rather low Arrhenius preexponential factor obtained in this reaction is compared and contrasted with those reported for other reactions of O(3P) with low molecular weight compounds. 相似文献
20.
The branching ratio β = k(1b)/k(1a) for the formation of methyl nitrate, CH(3)ONO(2), in the gas-phase CH(3)O(2) + NO reaction, CH(3)O(2) + NO → CH(3)O + NO(2) (1a), CH(3)O(2) + NO → CH(3)ONO(2) (1b), has been determined over the pressure and temperature ranges 50-500 Torr and 223-300 K, respectively, using a turbulent flow reactor coupled with a chemical ionization mass spectrometer. At 298 K, the CH(3)ONO(2) yield has been found to increase linearly with pressure from 0.33 ± 0.16% at 50 Torr to 0.80 ± 0.54% at 500 Torr (errors are 2σ). Decrease of temperature from 300 to 220 K leads to an increase of β by a factor of about 3 in the 100-200 Torr range. These data correspond to a value of β ≈ 1.0 ± 0.7% over the pressure and temperature ranges of the whole troposphere. Atmospheric concentrations of CH(3)ONO(2) roughly estimated using results of this work are in reasonable agreement with those observed in polluted environments and significantly higher compared with measurements in upper troposphere and lower stratosphere. 相似文献