首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The tetradentate Schiff-base ligands, N,N′-bis(salicylidene)-ethylenediamine (Salen), N,N′-bis(salicylidene) butylenediamine (Salbut), and N,N′-bis(salicylidene)-o–phenylenediamine, (sal-o-phen) are very strongly sorbed by cation exchange resin (Dowex-50W) with Fe2+ ions as a counter ion, forming stable complexes. The kinetics of the catalytic decomposition of H2O2 using these complexes was studied in ethanolic medium. The reaction was first-order with salen and sal-o-phen and second-order with salbut with respect to [H2O2]. The rate of the H2O2 decomposition increased either from salen to salbut or from salen to sal-o-phen. Also, the k (per g dry resin) values decreased with increasing both the particle size and the degree of resin cross-linkage. The active species formed at the beginning of the reaction, had an inhibiting effect on the reaction rate. The corresponding activation parameters were calculated from a least-squares fit of the temperature dependence of the rate constant. A reaction mechanism is proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The structure of the title complex consists of isolated [Cd(C7H4NO3S)2(C4H11NO2)2] units. The Cd2+ cation lies on an inversion centre and is octahedrally coordinated by two N,O‐bidentate diethanol­amine (dea) and two N‐bonded saccharinate (sac) ligands [saccharin is 1,2‐benziso­thia­zol‐3(2H)‐one 1,1‐dioxide]. The dea ligands constitute the equatorial plane of the octahedron, forming two five‐membered chelate rings around the CdII ion, while the sac ligands are localized at the axial positions. The Cd—Nsac, Cd—Ndea and Cd—Odea bond distances are 2.3879 (12), 2.3544 (14) and 2.3702 (13) Å, respectively. The H atoms of the free and coordinated hydroxyl groups of the dea ligands are involved in hydrogen bonding with the carbonyl and sulfonyl O atoms of the neighbouring sac ions, while the amine H atom forms a hydrogen bond with the free hydroxyl O atom. The individual mol­ecules are held together by strong hydrogen bonds, forming an infinite three‐dimensional network.  相似文献   

3.
Summary The kinetics of the acid dissociation of the copper(II) complex of the 15-membered N3O2 donor macrocycle [prepared by reaction of 2,6-bis(2-aminophenoxymethyl)-pyridine with glyoxal in the presence of a manganese(II) template followed by reduction of the two imine linkages with NaBH4] was studied over an acidity range (0.01–0.5 mol dm-3 [H+]) at 25 °C and I = 1.0 mol dm-3 by stopped-flow methods. A biphasic reaction was observed at 752 nm, the first reaction being complete within 20 ms at 25 °C and too rapid to study in detail. The second reaction shows a good first order dependence on the hydrogen ion concentration over the whole acidity range and k obs=k0+k H[H+], where k 0 = 0.52 s-1 and k H = 40.2 dm3 mol-1 s-1 at 25 °C. The k 0 term represents a small but significant solvolytic reaction. The mechanism of the acid-catalysed dissociation is discussed.  相似文献   

4.
Summary The tetradentate Schiff-base ligandN, N -bis(salicylidene)-o-phenylenediamine (salph) is very strongly sorbed by cation exchange materials with transition metal counter ions, forming stable complexes. The kinetics of catalytic decomposition of H2O2 in the presence of (salph)-FeIII sorbed on Dowex-50W resin has been studied in aqueous medium. The reaction is first order with respect to [H2O2]. The rate constant, k (per g of dry resin) decreased with increasing degree of resin cross-linkage due to a salting out effect. The activation parameters were calculated and a reaction mechanism is proposed.  相似文献   

5.
Two new chromium(III) complexes with picolinamide (pica) and oxalates, [Cr(C2O4)2(N,N′-pica)]2− and [Cr(C2O4)2(N,O-pica)], were obtained and the kinetics of their aquation in HClO4 solutions were studied. The aquation leads to pica liberation and proceeds in two stages: (i) the chelate-ring opening at the Cr–amide bond and (ii) the Cr–N-pyridine bond breaking, which gives free pica and cis-[Cr(C2O4)2(H2O2)2]. In the case of N,N′-bonded pica the kinetics of both stages was determined and in the case of the N,O-bonded pica only the second stage was investigated. The following rate laws were established: (k obs)1 = k 0 + k 1 Q 1[H+] and (k obs)2 = k 2 Q 2[H+], where k 0 and k 1 are the rate constants of the chelate-ring opening in the unprotonated and protonated starting complex, and k 2 is the rate constant of the pica liberation from the protonated intermediate. Kinetic parameters are calculated and the aquation mechanism is discussed.  相似文献   

6.
The nucleophilic second-order rate constant (kOH) for the reaction of ōH with ionized N-hydroxyphthalimide (S?) appears to follow a reaction mechanism similar to that for reactions of ōH with neutral phthalimide and its N-substituted derivatives. Kinetically indistinguishable terms, kw[H2O][S?] and kōH[ōH][SH] (SH represents nonionized N-hydroxyphthalimide), which constitute the pH-independent rate region of the pH-rate profile, are resolved qualitatively. It is shown that the term kōH[ōH][SH], rather than kw[H2O][S?], is important in these reactions. The rates of ōH-catalyzed cleavage of S? were studied at 32° in the presence of micelles of sodium dodecyl sulphate (SDS). At a constant [ōH], the observed pseudo first-order rate constants (kobs) increase linearly with [SDS]T (total SDS concentration). These data are explained in terms of the pseudophase model of micellar effects on reactivity. The linear dependence of kobs with [SDS]T (within [SDS]T range of 0.0–0.2 or 0.3 M) is attributed to the occurrence of the reaction between the exterior boundary of Stern layer and Gouy-Chapman layer.  相似文献   

7.
A novel infinite one‐dimensional silver cylinder, namely poly[μ‐ethylenediamine‐μ5‐(2‐sulfanidylbenzoato)‐μ4‐(2‐sulfanidylbenzoato)‐tetrasilver(I)], [Ag4(C7H4O2S)2(C2H8N2)]n, has been synthesized by one‐pot reaction of equivalent molar silver nitrate and 2‐mercaptobenzoic acid (H2mba) in the presence of ethylenediamine (eda). One Ag atom is located in an AgS2NO four‐coordinated tetrahedral geometry, two other Ag atoms are in an AgS2O three‐coordinated T‐shaped geometry and the fourth Ag atom is in an AgSNO coordination environment. The two mba ligands show two different binding modes. The μ2N:N′‐eda ligand, acting as a bridge, combines with mba ligands to extend the AgI ions into a one‐dimensional silver cylinder incorporating abundant Ag...Ag interactions ranging from 2.9298 (11) to 3.2165 (13) Å. Interchain N—H...O hydrogen bonds extend the one‐dimensional cylinder into an undulating two‐dimensional sheet, which is further packed into a three‐dimensional supramolecular framework by van der Waals interactions; no π–π interactions were observed in the crystal structure.  相似文献   

8.
Three new manganese(II), lead(II) and cadmium(II) coordination complexes have been prepared by reaction of N‐(1H‐tetrazol‐5‐yl)cinnamamide (HNTCA) with divalent metal salts (MnCl2, PbCl2 and CdCl2) in a mixed‐solvent system, affording mononuclear to trinuclear structures namely, bis(methanol‐κO)bis[5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ2N1,O]manganese(II), [Mn(C10H8N5O)2(CH3OH)2], (1), bis[μ‐5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido]‐κ3N1,O:N23N2:N1,O‐bis{aqua[5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ2N1,O]lead(II)}, [Pb2(C10H8N5O)4(H2O)2], (2), and hexakis[μ2‐5‐(3‐phenylprop‐2‐enamido)‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ3N1,O:N2]tricadmium(II), [Cd3(C10H8N5O)6], (3). The structures of these three compounds reveal that the nature of the metal ions and the side groups of the organic building blocks have a significant effect on the structures of the coordination compounds formed. Intermolecular hydrogen bonds link the molecules into two‐dimensional [complex (1)] and three‐dimensional hydrogen‐bonded networks. Complexes (2) and (3) show significant fluorescence, while complex (1) displays no fluorescence.  相似文献   

9.
Schiff bases are considered `versatile ligands' in coordination chemistry. The design of polynuclear complexes has become of interest due to their facile preparations and varied synthetic, structural and magnetic properties. The reaction of the `ligand complex' [CuL] {H2L is 2,2′‐[propane‐1,3‐diylbis(nitrilomethanylylidene)]diphenol} with Ni(OAc)2·4H2O (OAc is acetate) in the presence of dicyanamide (dca) leads to the formation of bis(dicyanamido‐1κN1)bis(dimethyl sulfoxide)‐2κO,3κO‐bis{μ‐2,2′‐[propane‐1,3‐diylbis(nitrilomethanylylidene)]diphenolato}‐1:2κ6O,O′:O,N,N′,O′;1:3κ6O,O′:O,N,N′,O′‐dicopper(II)nickel(II), [Cu2Ni(C17H16N2O2)2(C2N3)2(C2H6OS)2]. The complex shows strong absorption bands in the frequency region 2155–2269 cm−1, which clearly proves the presence of terminal bonding dca groups. A single‐crystal X‐ray study revealed that two [CuL] units coordinate to an NiII atom through the phenolate O atoms, with double phenolate bridges between CuII and NiII atoms. Two terminal dca groups complete the distorted octahedral geometry around the central NiII atom. According to differential thermal analysis–thermogravimetric analysis (DTA–TGA), the title complex is stable up to 423 K and thermal decomposition starts with the release of two coordinated dimethyl sulfoxide molecules. Free H2L exhibits photoluminescence properties originating from intraligand (π–π*) transitions and fluorescence quenching is observed on complexation of H2L with CuII.  相似文献   

10.
Bis-sulfonamide bis-amide TAML activator [Fe{4-NO2C6H3-1,2-(NCOCMe2NSO2)2CHMe}] ( 2 ) catalyzes oxidative degradation of the oxidation-resistant neonicotinoid insecticide, imidacloprid (IMI), by H2O2 at pH 7 and 25 °C, whereas the tetrakis-amide TAML [Fe{4-NO2C6H3-1,2-(NCOCMe2NCO)2CF2}] ( 1 ), previously regarded as the most catalytically active TAML, is inactive under the same conditions. At ultra-low concentrations of both imidacloprid and 2 , 62 % of the insecticide was oxidized in 2 h, at which time the catalyst is inactivated; oxidation resumes on addition of a succeeding aliquot of 2 . Acetate and oxamate were detected by ion chromatography, suggesting deep oxidation of imidacloprid. Explored at concentrations [ 2 ]≥[IMI], the reaction kinetics revealed unusually low kinetic order in 2 (0.164±0.006), which is observed alongside the first order in imidacloprid and an ascending hyperbolic dependence in [H2O2]. Actual independence of the reaction rate on the catalyst concentration is accounted for in terms of a reversible noncovalent binding between a substrate and a catalyst, which usually results in substrate inhibition when [catalyst]≪[substrate] but explains the zero order in the catalyst when [ 2 ]>[IMI]. A plausible mechanism of the TAML-catalyzed oxidations of imidacloprid is briefly discussed. Similar zero-order catalysis is presented for the oxidation of 3-methyl-4-nitrophenol by H2O2, catalyzed by the TAML analogue of 1 without a NO2-group in the aromatic ring.  相似文献   

11.
Chromium(III)-isonicotinate complexes, cis-[Cr(C2O4)2(N-inic)(H2O)]- and [Cr(C2O4)(H2O)3-OH-Cr(C2O4)2(O-inic)]-(N-inic)(H2 (N-inic = N-bonded and O-inic = O-bonded isonicotinic acid) were obtained and characterized in solution. Kinetics of acid-catalyzed isonicotinate ligand liberation were studied spectrophotometrically in the 0.1–1.0 m HClO4 range, at I=1.0 m. The dependencies of the pseudo-first order rate constant on [H+] were established: kobs = k0+kHQH[H+] and kobs = kHQH[H+] for the N-inic and O-inic complex, respectively, where k0 and kH are the rate constants of the spontaneous and the acid-catalyzed reaction paths, and QH is the protonation constant of the carboxylic group in isonicotinic ligand. The obtained results indicate that N-bonded isonicotinic acid liberation occurs mainly via a spontaneous reaction path and is much slower than O-bonded inic liberation. The mechanisms for these processes are proposed.  相似文献   

12.
Kita  Ewa 《Transition Metal Chemistry》2001,26(4-5):551-556
Two [Cr(C2O4)2(AB)]2– type complexes, obtained from the reaction of cis-[Cr(C2O4)2(H2O)2] with the AB ligand, [AB = picolinic (pyac) or 2-pyridine-ethanoic acid (pyeac) anions], were converted into [Cr(C2O4)(pyac)(H2O)2]0 and [Cr(C2O4)(pyeac)(H2O)2]0 compounds, respectively via FeIII-induced substitution of the oxalato ligand. The aquation products were separated chromatographically and their spectral characteristics and acid dissociation constants determined. The kinetics of the oxalato ligand substitution were studied with a 10–40 fold excess of FeIII over [CrIII] at [H+] = 0.2 M and at constant ionic strength 1.0 M (Na+, H+, Fe3+, ClO 4). The reaction rate law is of the form: r = k obs[CrIII], where k obs = kQ[FeIII]/(1 + Q[FeIII]). The first-order rate constants (k), preequilibria quotients (Q) and activation parameters derived from the k values have been determined. The reaction mechanism is discussed in terms of a Lewis acid catalyzed (induced) ligand substitution.  相似文献   

13.
The kinetics of the reaction between 1,2,3-trihydroxybenzene (pyrogallol) and O2 (autoxidation) have been determined by monitoring the concentration of dissolved dioxygen with a polarographic oxygen electrode. The reaction is carried out in pseudo-first-order excess pyrogallol, 25°C, 0.08 M NaCl, and 0.04 M phosphate buffer in the pH range 6.9–10.5. Data collection precedes reaction initiation, but only the data recorded after the estimated 3.2 s dead time are used in kinetics calculations. Observed rate constants are corrected for incomplete mixing, which is treated as a first-order process that has an experimentally determined mixing rate constant of 4.0 s?1. The rate law for the reaction is ?d[O2]/dt=kapp[PYR]tot[O2], in which [PYR]tot is the total stoichiometric pyrogallol concentration. A mechanism is presented which explains the increase in rate with increasing [OH?] by postulating that H2PYR? (k2) has greater reactivity with dissolved dioxygen than does H3PYR (k1). The data best fit the equation kapp=(k1 + k2KH[OH?])/(1 + KH[OH?]) when the value of the hydrolysis constant KH (the quotient of the pyrogallol acid dissociation and water autoprotolysis constants) for this medium equals 3.1×104 M?1. The resulting values of k1 and k2, respectively, equal (0.13 + 0.01) M?1 s?1 and (3.5 plusmn; 0.1) M?1 s?1. This reaction is recommended as a test reaction for calibrating the dynamic response of an O2-electrode. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Two differently hydrated crystal forms of the title compound, viz. bis­(acetato‐κ2O,O′)(2,9‐di­methyl‐1,10‐phenanthroline‐κ2N,N′)­mercury(II), [Hg(C2H3O2)2(C14H12N2)] or [HgAc2(dmph)] [dmph is 2,3‐di­methyl‐1,10‐phenantroline (neocuproine) and Ac is acetate], (I), and tris­[bis­(acetato‐κ2O,O′)(2,9‐di­methyl‐1,10‐phenanthroline‐κ2N,N′)­mercury(II)] hexadecahydrate, [Hg(C2H3O2)2(C14H12N2)]3·16H2O or [HgAc2(dmph)]3·16H2O, (II), are presented. Both structures are composed of very simple monomeric units, which act as the building blocks of complex packing schemes stabilized by a diversity of π–π and hydrogen‐bonding interactions.  相似文献   

15.
The crystal structures of five new transition‐metal complexes synthesized using thiazole‐2‐carboxylic acid (2‐Htza), imidazole‐2‐carboxylic acid (2‐H2ima) or 1,3‐oxazole‐4‐carboxylic acid (4‐Hoxa), namely diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cobalt(II), [Co(C4H2NO2S)2(H2O)2], 1 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)nickel(II), [Ni(C4H2NO2S)2(H2O)2], 2 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cadmium(II), [Cd(C4H2NO2S)2(H2O)2], 3 , diaquabis(1H‐imidazole‐2‐carboxylato‐κ2N3,O)cobalt(II), [Co(C4H2N2O2)2(H2O)2], 4 , and diaquabis(1,3‐oxazole‐4‐carboxylato‐κ2N,O4)cobalt(II), [Co(C4H2NO3)2(H2O)2], 5 , are reported. The influence of the nature of the heteroatom and the position of the carboxyl group in relation to the heteroatom on the self‐assembly process are discussed based upon Hirshfeld surface analysis and used to explain the observed differences in the single‐crystal structures and the supramolecular frameworks and topologies of complexes 1 – 5 .  相似文献   

16.
The kinetics of oxidation of benzhydrol and its p-substituted derivatives (YBH, where Y=H, Cl, Br, NO2, CH3, and OCH3) by sodium N-chloro-p-toluenesulfonamide or chloramine-T (CAT), catalyzed by ruthenium(III) chloride, in the presence of hydrochloric acid in 30% (v/v) MeOH medium has been studied at 35°C. The reaction rate shows a first-order dependence on [CAT]O and a fractional-order each on [ YBH]O, [Ru(III)], and [H+]. The reaction also has a negative fractional-order (−0.35) behavior in the reduction product of CAT, p-toluenesulfonamide (PTS). The increase in MeOH content of the solvent medium retards the rate. The variation of ionic strength of the medium has negligible effect on the rate. Rate studies in D2O medium show that the solvent isotope effect, k′H2O/k′D2O, is equal to 0.60. Proton inventory studies have been made in H2O(SINGLEBOND)D2O mixtures. The rates correlate satisfactorily with Hammett σ relationship. The LFE relationship plot is biphasic and the reaction constant ρ=−2.3 for electron donating groups and ρ=−0.32 for electron withdrawing groups at 35°C. Activation parameters ΔH, ΔS, and ΔG have been calculated. The parameters, ΔH and ΔS, are linearly related with an isokinetic temperature β=334 K indicating enthalpy as a controlling factor. A mechanism consistent with the observed kinetics has been proposed. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
Summary Peroxodisulfate ion readily oxidises CoII-YOH [YOH =N(2-hydroxyethyl)ethylenediaminetriacetate] with the formation of an intermediate complex. The kinetics of the electron-transfer step follow the rate law: Rate = 2kHKH[H+][S2O8]2-[CoII-YOH]/(1 + KH[H+]) where [S2O8]2– is the total peroxodisulfate concentration, kH is the rate constant for the electron-transfer process, and KH is the pre-equilibrium protonation constant. Activation parameters have been evaluated. The intermediate, which was identified spectrophotometrically, slowly rearranges to the quinquedentate species Co(YOH)(H2O). The rate of this rearangement has also been measured.  相似文献   

18.
The kinetics of the oxidation of the 2-aminomethylpyridineCoII complex by N-bromosuccinimide (NBS), have been studied in aqueous solutions under various conditions, and obey the following rate law:Rate = [NBS][Co(L)(H2O)2]2+[k2+k3/[H+]]An inner-sphere mechanism is proposed for the oxidation pathway for both protonated and deprotonated complex species, with the formation of an intermediate, which is slowly converted into the final oxidation products. The reaction rate is increased by increasing the pH, T, [complex], and decreased by increasing ionic strength over the range studied.  相似文献   

19.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

20.
A potentially pentadentate hydrazone ligand, N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazide (HL), was prepared from the condensation reaction of nicotinohydrazide and acetylpyrazine. Reactions of HL with MnCl2, Mn(CH3COO)2 and Cd(CH3COO)2 afforded three metal complexes, namely dichlorido{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazide‐κ2N′,O}manganese(II), [MnCl2(C12H11N5O)], (I), bis{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O]manganese(II), [Mn(C12H10N5O)2], (II), and poly[[(acetato‐κ2O,O′){μ3N′‐[1‐(pyrazin‐2‐yl‐κ2N1:N4)ethylidene]nicotinohydrazidato‐κ3N′,O:N1}cadmium(II)] chloroform disolvate], {[Cd(C12H10N5O)(CH3COO)]·2CHCl3}n, (III), respectively. Complex (I) has a mononuclear structure, the MnII centre adopting a distorted square‐pyramidal coordination. Complex (II) also has a mononuclear structure, with the MnII centre occupying a special position (C2 symmetry) and adopting a distorted octahedral coordination environment, which is defined by two O atoms and four N atoms from two N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazidate (L) ligands related via a crystallographic twofold axis. Complex (III) features a unique three‐dimensional network with rectangular channels, and the L ligand also serves as a counter‐anion. The coordination geometry of the CdII centre is pentagonal bipyramidal. This study demonstrates that HL, which can act as either a neutral or a mono‐anionic ligand, is useful in the construction of interesting metal–organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号