首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Trimethylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Phosphorylation of histone H3 has been linked with mitotic chromatin condensation. During mitosis in vivo, H3 lysine 9 methylation and serine 10 phosphorylation can occur concomitantly on the same histone tail, whereas the influence of phosphorylation to trimethylation H3 tail recruiting HP1 remains controversial. In this work, molecular dynamics simulation of HP1 complexed with both trimethylated and phosphorylated H3 tail were performed and compared with the results from the previous methylated H3‐HP1 trajectory. It is clear from the 10‐ns dynamics simulation that two adjacent posttranslational modifications directly increase the flexibility of the H3 tail and weaken HP1 binding to chromatin. A combinatorial readout of two adjacent posttranslational modifications—a stable methylation and a dynamic phosphorylation mark—establish a regulatory mechanism of protein–protein interactions. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

4.
5.
6.
7.
Lysine-specific histone demethylase 1 (LSD1) represents the first example of an identified nuclear protein with histone demethylase activity. In particular, it plays a special role in the epigenetic regulation of gene expression, as it removes methyl groups from mono- and dimethylated lysine 4 and/or lysine 9 on histone H3 (H3K4me1/2 and H3K9me1/2), behaving as a repressor or activator of gene expression, respectively. Moreover, it has been recently found to demethylate monomethylated and dimethylated lysine 20 in histone H4 and to contribute to the balance of several other methylated lysine residues in histone H3 (i.e., H3K27, H3K36, and H3K79). Furthermore, in recent years, a plethora of nonhistone proteins have been detected as targets of LSD1 activity, suggesting that this demethylase is a fundamental player in the regulation of multiple pathways triggered in several cellular processes, including cancer progression. In this review, we analyze the molecular mechanism by which LSD1 displays its dual effect on gene expression (related to the specific lysine target), placing final emphasis on the use of pharmacological inhibitors of its activity in future clinical studies to fight cancer.Subject terms: Epigenetics, Histone post-translational modifications  相似文献   

8.
The phosphorylated form of histone H2AX, γH2AX, is a component of the DNA repair system. Most studies have focused on the role of γH2AX during cell transformation and human cancer, but little is known about its role in keratinocytes and the skin during UV irradiation. We analyzed the response to UV irradiation focusing on the phosphorylation of histone H2AX both in vitro, in keratinocyte cultures and in artificial epidermis, and then in vivo, in human skin. Acute UVB irradiation of human keratinocytes increased the phosphorylation of H2AX in a dose-dependent manner; two types of γH2AX response were observed either in vitro or in vivo. After a low nonapoptotic UVB irradiation, cells contained phosphorylated H2AX and arrested their cell cycle to repair the DNA damages. For a stronger and proapoptotic UVB irradiation, keratinocytes dramatically increased the phosphorylation of H2AX and committed apoptosis. Our results indicate that γH2AX constitutes a highly sensitive marker relevant for studying subapoptotic doses as well as proapoptotic doses of UVB in human skin.  相似文献   

9.
10.
11.
12.
Cytotoxic effect of either cisplatin or p53 gene transfection of lung cancer cells may be different depending on the p53 status of cells. We investigated cytotoxic effects on the combined treatment of cisplatin and adenovirus mediated p53 gene transfer (Avp53) in both H460 and H1299 cells in vitro. The results showed the highest numbers of apoptotic cells in both H460 and H1299 cells following the combined treatment regardless of p53 status in comparison with either cisplatin or Avp53 alone. The expression levels of p53, p21, Bax and ICE were examined to understand a possible cellular signal path of the combined treatment. In western analyses, the patterns of phosphorylated p53 protein were different between Avp53 and combined treatment. The expressions of p21 and Bax were increased in combined treatment, whereas the cleaved form of ICE (20 kD) was not detected. These results suggest that cisplatin induced p53 protein phosphorylation and may activate the downstream of p53 gene expression such as p21 and Bax. The enhanced apoptosis of lung cancer cells by the combined treatment may be useful in the development of clinical therapeutic modality of lung tumors.  相似文献   

13.
Sphingosylphosphorylcholine (SPC) induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) into smooth muscle-like cells expressing α-smooth muscle actin (α-SMA) via transforming growth factor-β1/Smad2- and RhoA/Rho kinase-dependent mechanisms. 3-Hydroxy-3-methylglutaryl- coenzyme A reductase inhibitors (statins) have been known to have beneficial effects in the treatment of cardiovascular diseases. In the present study, we examined the effects of simvastatin on the SPC-induced α-SMA expression and Smad2 phosphorylation in hASCs. Simvastatin inhibited the SPC-induced α-SMA expression and sustained phosphorylation of Smad2 in hASCs. SPC treatment caused RhoA activation via a simvastatin-sensitive mechanism. The SPC-induced α-SMA expression and Smad2 phosphorylation were abrogated by pretreatment of the cells with the Rho kinase inhibitor Y27632 or overexpression of a dominant negative RhoA mutant. Furthermore, SPC induced secretion of TGF-β1 and pretreatment with either Y27632 or simvastatin inhibited the SPC-induced TGF-β1 secretion. These results suggest that simvastatin inhibits SPC-induced differentiation of hASCs into smooth muscle cells by attenuating the RhoA/Rho kinase-dependent activation of autocrine TGF-β1/Smad2 signaling pathway.  相似文献   

14.
Post-translational modifications (PTMs) of histones are intimately involved in chromatin structure and thus have roles in cellular processes through their impact on gene activation or repression. At the forefront in histone PTM analysis are mass spectrometry-based techniques, which have capabilities to produce improved views of processes affected by chromatin remodeling via histone modifications. In this report, we take the first mass spectrometric look at histone variant expression and post-translational modifications from histones isolated from rat brain tissue. Analyses of whole rat brain identified specific histone H2A and H2B gene family members and several H4 and H3 post-translational modification sites by electron capture dissociation (ECD) mass spectrometry. We subsequently compared these results to selected rat brain regions. Major differences in the expression profiles of H2A and H2B gene family members or in the post-translational modifications on histone H4 were not observed from the different brain regions using a Top Down approach. However, “Middle Down” mass spectrometry facilitating improved characterization of the histone H3 tail (1–50 residues), revealed an enrichment of trimethylation on Lys9 from cerebellum tissue compared to H3 extracted from whole brain, cerebral cortex or hypothalamus tissue. We forward this study in honor of Professor Donald F. Hunt, whose pioneering efforts in protein and PTM analyses have spawned new eras and numerous careers, many exemplified in this special issue.  相似文献   

15.
16.
17.
Core histones are known to carry a variety of post-translational modifications (PTMs), including acetylation, phosphorylation, methylation and ubiquitination, which play important roles in the epigenetic control of gene expression. The nature and biological functions of these PTMs in histones from plants, animals and budding yeast have been extensively investigated. In contrast, the corresponding studies for fission yeast were mainly focused on histone H3. In the present study, we applied LC-nano-ESI-MS/MS, coupled with multiple protease digestion, to identify PTMs in histones H2A, H2B and H4 from Schizosaccharomyces pombe (S. pombe), the typical model organism of fission yeast. Various protease digestions provided high sequence coverage for PTM mapping, and accurate mass measurement of fragment ions allowed for unambiguous differentiation of acetylation from tri-methylation. Many modification sites conserved in other organisms were identified in S. pombe. In addition, some unique modification sites, including N-terminal acetylation in H2A and H2B as well as K123 acetylation in H2A.β, were observed. Our results provide a comprehensive picture of the PTMs of histones H2A, H2B and H4 in S. pombe, which serves as a foundation for future investigations on the regulation and functions of histone modifications in this important model organism.  相似文献   

18.
19.
Deoxyhypusine synthase catalyzes the first step in the posttranslational synthesis of an unusual amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF-5A) precursor protein. We earlier observed that yeast recombinant deoxyhypusine synthase was phosphorylated by protein kinase C (PKC) in vitro (Kang and Chung, 1999) and the phosphorylation rate was synergistically increased to a 3.5-fold following treatment with phosphatidylserine (P.Ser)/diacylglycerol (DAG)/ Ca(2+), suggesting a possible involvement of PKC. We have extended study on the phosphorylation of deoxyhypusine synthase in vivo in different cell lines in order to define its role on the regulation of eIF5A in the cell. Deoxyhypusine synthase was found to be phosphorylated by endogenous kinases in CHO, NIH3T3, and chicken embryonic cells. The highest degree of phosphorylation was found in CHO cells. Moreover, phosphorylation of deoxyhypusine synthase in intact CHO cells was revealed and the expression of phosphorylated deoxyhypusine synthase was significantly diminished by diacyl ethylene glycol (DAEG), a PKC inhibitor, and enhanced by phorbol 12-myristate 13-acetate (PMA) or Ca(2+)/DAG. Endogenous PKC in CHO cell and cell lysate was able to phosphorylate deoxyhypusine synthase and this modification is enhanced by PMA or Ca(2+) plus DAG. Close association of PKC with deoxyhypusine synthase in the CHO cells was evident in the immune coprecipitation and was PMA-, and Ca(2+)/phospholipid dependent. These results suggest that phosphorylation of deoxyhypusine synthase was PKC-dependent cellular event and open a path for possible regulation in the interaction with eIF5A precursor for hypusine synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号