首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the linear formulation, an investigation is made into the development of undamped (in time) plane waves generated by a. harmonically varying pressure applied to the free surface of an initially undisturbed flow of a continuously stratified fluid of finite depth. The cases of a homogeneous fluid and two-layer fluid are considered in [1–3]. Nonstationary waves in a continuously stratified flow generated by a time-independent pressure were investigated in [4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 99–104, July–August, 1980.  相似文献   

2.
A general approach to the investigation of linear internal and surface waves in a stably stratified fluid, arising from different types of perturbations, is presented in [1]. The methods of calculation of the internal waves generated by the motion of a mass source are developed for particular cases of steady horizontal motion in a continuously stratified fluid in [2] and arbitrary motion in an unbounded exponentially stratified fluid in [3]. Internal waves generated by other types of perturbations have also been investigated but only for particular cases of motion (see, for example, [4]). This paper presents a method for the calculation of unsteady, linear, internal gravity waves arising in an inviscid incompressible fluid with continuous stable stratification.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 122–130, July–August, 1985.  相似文献   

3.
An analysis is made in the linear formulation of the three-dimensional structure of unsteady waves created in a flow of continuously stratified fluid by a region of pressures which are harmonic with respect to time.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 71–77, November–December, 1984.  相似文献   

4.
This study investigates the plane linear problem of steady-state internal waves in an ideal incompressible liquid with nonuniform density. The waves are generated by surface pressures applied in a bounded region which moves at constant velocity. It is assumed that the density in the unperturbed state varies continuously with depth, remaining constant in the upper and lower layers and varying according to an exponential law in the middle layer. The problem may be regarded, in particular, as a hydrodynamic model for the study of internal waves produced by a cyclone moving over the surface of the ocean. Analogous investigations for a homogeneous liquid were carried out in [1–3]; internal waves for a liquid with the above-mentioned law of density variation but with stationary pressure changes which are periodic with respect to time were studied in [4]. Problems analogous to the one considered here, both for exponential variation of density in the entire layer and for the case of a nonuniform layer near the surface, were investigated in [5, 6]. An analysis of non-linear waves of the steady-state type with arbitrary distribution of vorticity and density with respect to depth was carried out in [7, 8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 55–62, November–December, 1973.  相似文献   

5.
The development of three-dimensional waves generated by a region of pressures moving uniformly and rectilinearly over the surface of a thin elastic isotropic plate covering an ideal fluid layer of finite depth is investigated. The pressures act starting at a certain instant. A qualitative similarity between the waves occurring and gravity-capillary waves is noted. The calculations are made for an ice cover. This model problem permits examining a number of properties of the oscillations of the ice cover occurring when hauling freight over ice roads, landing and takeoff of aircraft from ice fields, etc. [1]. The development of ship waves in a fluid of finite depth in the absence of a floating plate was investigated in [2, 3] and gravity-capillary waves were studied in [4–6]. Certain properties of steady three-dimensional waves occurring during movement of a load over the surface of a floating elastic plate were established in [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 26–32, September–October, 1978.  相似文献   

6.
Plane steady flow is considered for an ideal incompressible stratified fluid in a gravitational field of force. It is a characteristic feature of these flows that the density is constant and Bernoulli's constant remains the same along a streamline. Internal waves arise because of ponderability in the stratified fluid; they are not due to the presence of a free surface. These wave motions are studied in detail in the linear formulation, but flows of the solitary wave type can be described only by nonlinear equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 174–178, March–April, 1986.  相似文献   

7.
A theoretical investigation is made into the development of linear internal waves in an exponentially stratified flow of an ideal incompressible fluid in the Boussinesq approximation. The waves are generated by an arbitrarily moving point mass source. The obtained solution is used to investigate three special cases of motion: uniform motion at an angle to the horizontal, nonstationary motion during a finite interval of time, and uniform motion in a circular path. The method of solution of this problem is similar to that used by Wolfe and Lewis [1], who studied the generation of acoustic waves.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–74, May–June, 1980.I thank V. V. Sazonov for assistance in the calculations.  相似文献   

8.
Composite waves on the surface of the stationary flow of a heavy ideal incompressible liquid are steady forced waves of finite amplitude which do not disappear when the pressure on the free surface becomes constant but rather are transformed into free nonlinear waves [1]. It will be shown that such waves correspond to the case of nonlinear resonance, and mathematically to the bifurcation of the solution of the fundamental integral equation describing these waves. In [2], a study is made of the problem of composite waves in a flow of finite depth generated by a variable pressure with periodic distribution along the surface of the flow. In [3], such waves are considered for a flow with a wavy bottom. In this case, composite waves are defined as steady forced waves of finite amplitude that, when the pressure becomes constant and the bottom is straightened, do not disappear but are transformed into free nonlinear waves over a flat horizontal bottom. However, an existence and uniqueness theorem was not proved for this case. The aim of the present paper is to fill this gap and investigate the conditions under which such waves can arise.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 88–98, July–August, 1980.  相似文献   

9.
A linear theory on the internal waves generated in the stratified fluid with a pycnocline is presented in this paper. The internal wave fields such as the velocity fields in the stratified fluid and velocity gradient fields at the free surface are also investigated by means of the theoretical and numerical method. From the numerical results, it is shown that the internal wave generated by horizontally moving Rankine ovoid is a sort of trapped wave which propagates in a wave guide, and its waveform is a kind of Mach front-type internal wave in the pycnocline. Influence of the internal wave on the flow fields at the free surface is represented by the velocity gradient fields resulted from the internal waves generated by motion of the Rankine ovoid. At the same time, it is also shown that under the hypothesis of inviscid fluid, the synchronism between the surface velocity gradient fields at the free surface and the internal wave fields in the fluid is retained. This theory opens a possibility to study further the modulated spectrum of the Bragg waves at the free surface.The project supported by the National Natural Science Foundation of China (40576010). The English text was polished by Keren Wang.  相似文献   

10.
The three-dimensional problem of the flow of an exponentially stratified fluid of finite depth over bottom roughness is considered in the rigid roof approximation and in the presence of a free surface. In the rigid roof approximation the solution is obtained in the form of a Fourier series in the vertical Lagrangian coordinate, and the series coefficients are expressed in terms of single integrals outside a horizontal strip whose sides are parallel to the flow axis and tangential to the projection of the support of the function describing the bottom roughness. This makes it possible to investigate the near field in regions not considered in [1, 2]. The presence of a small parameter in the boundary condition at the free surface makes it possible to find, in the first approximation, the wave motions and nonwave disturbances at the free surface in the near and far fields. In the near field the width of the wave zone is of the order of the flow depth, expands with distance from the bottom and is broadest at the free surface. As distinct from the annular disturbances within the fluid, the pattern of the nonwave disturbances at the free surface depends on the polar angle. The law of similarity for the diverging waves at the free surface is also obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 101–111, May–June, 1990.The authors are grateful to É. V. Teodorovich for discussing the formulation of the problem.  相似文献   

11.
Perturbations of the surface of an exponentially stratified liquid of finite depth, free or covered by an elastic plate, are studied on the assumption that the perturbations are caused by internal waves generated by the steady motion of a constant -intensity source. The dependence of the spatial distribution of perturbations on the plate properties, velocity and the submersion depth of the source is considered.Sevastopol. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 118–125, March–April, 1995.  相似文献   

12.
The pattern of disturbances arising during the motion of a strip along a horizontal surface in a continuously stratified fluid with identified upstream and attached internal waves, boundary layers, and edge singularities is calculated in the liner approximation. The flow pattern behind a flat plate moving with a constant velocity in a continuously stratified fluid is studied with the use of the optical schlieren technique; transformation of waves and finely structured elements of the flow with increasing plate velocity is analyzed. The calculated and experimentally observed patterns of internal waves at low velocities are demonstrated to be in good agreement. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 77–91, November–December, 2007.  相似文献   

13.
The three-dimensional problem of finite-depth stratified flow over a small bottom irregularity is considered in mixed Euler-Lagrange variables. The Brunt-Väisälä frequency is assumed to be constant and small, and the free surface condition is replaced by the rigid roof condition. Investigation of the far field showed that the principal wave perturbations lie within an angle which for large values of the internal Froude number is much less than theKelvin angle, while the wave amplitude at infinity is of the order of l/r, where r is the polar radius. The ring perturbations are exponentially damped. As distinct from point source models, the model in question does not lead to divergence of the integrals on the flow axis [1-3]. Appproximate expressions for the radial and ring waves in terms of certain universai functions were obtained for investigating the near and far fields when the bottom irregularity is hemispherical. For the radial waves a law of similarity was obtained for which the characteristic dimension in the direction of the flow axis is the ratio of the flow velocity to the Brunt-Väisälä frequency, and the characteristic dimension in a direction perpendicular to the flow axis the depth of the fluid. In the first approximation the ring perturbations do not depend on the Brunt-Väisälä frequency. It is shown that in the near field the zone of intense wave perturbations is of the order of the fluid depth and not of the dimensions of the obstacle as for Kelvin ship waves on the surface of a homogeneous fluid.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 86–94, September–October, 1987.  相似文献   

14.
The effect of a rigid bottom of periodic form on small periodic oscillations of the free surface of a liquid is considered with the assumption of low amplitude roughness. The methodologically most significant study in this direction, [1], will be utilized. In [1] the steady-state problem for flow over an arbitrarily rough bottom was studied. Other studies have recently appeared on small free oscillations above a rough bottom. Essentially these have considered the effect of underwater obstacles and cavities on surface waves in the shallow-water approximation (for example, [2], [3]). Liquid oscillations in a layer of arbitrary depth slowly varying with length were considered in [4]. However, these results cannot be applied to the study of resonant interaction of gravitational waves with a periodically curved bottom.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 43–48, July–August, 1984.  相似文献   

15.
The problem of motion of a two-layer fluid of finite depth subjected to pressure applied to its surface in the presence of a semiinfinite plate is considered in a linear formulation. Expressions governing the form of the originating surface and internal waves are obtained. Results are presented of a numerical computation of the elevation of the free surface and the interface caused by the application of the pressure.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 91–96, September–October, 1976.  相似文献   

16.
In [1] a model of a wave generator, together with an experimental apparatus to determine the traditional forces generated by the model in water, is described. At the surface of the model six axisymmetric traveling waves are generated, giving rise to motion of the body and the surrounding liquid. The steady flow of liquid caused by oscillations of a cylindrical surface of infinite length was investigated in [2, 3]. The present work investigates the tractional forces of an elongated solid of revolution in a liquid produced by waves traveling over the flexible cylindrical part of the body. The hydrodynamic surface forces are determined by numerical integration of the Navier-Stokes equation. Graphs of the tractional force against the velocity and amplitude of the waves are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 145–149, May–June, 1977.In conclusion, thanks are due to M. A. Il'gamovfor his interest in the work and for useful advice.  相似文献   

17.
When bodies move in a liquid with inhomogeneous density in a gravitational field waves are excited even at low velocities and in the absence of boundaries. They are the so-called internal waves (buoyancy waves), which play an important part in geophysical processes in the ocean and the atmosphere [1–4]. A method based on the replacement of the bodies by systems of point sources is now commonly used to calculate the fields of internal waves generated by moving bodies. However, even so the problems of the generation of waves by a point source and dipole are usually solved approximately or numerically [5–11]. In the present paper, we obtain exact results on the spectral distribution of the emitted waves and the total radiation energy per unit time for some of the simplest sources in the two-dimensional case for an incompressible fluid with exponential density stratification. The wave resistance is obtained simply by dividing the energy loss per unit time by the velocity of the source. In the final section, some results for the three-dimensional case are briefly formulated for comparison.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 77–83, March–April, 1981.  相似文献   

18.
In this article we formulate and solve the problem of the influence of radiation forces (forces created by the radiation pressure) on two spheres in a viscous fluid during the transmission of an acoustic wave. On the basis of these forces we investigate the nature of the interaction between the spheres as determined by the mutual disturbance of the flow fields around them as a result of interference between the primary and secondary waves reflected from the spheres. A previously proposed [2] approach is used in the investigations. The radiation force acting on one of the spheres is filtered by averaging the convolution of the stress tensor in the fluid with the unit normal to the surface of the sphere over a time interval and over the surface of the sphere. The stresses in the fluid are represented, to within second-order quantities in the parameters of the wave field, in terms of the velocity potentials obtained from the solution of the linear problem of the diffraction of the primary wave by the free spheres. The diffraction problem is formulated and solved within the framework of the theory of linear viscoelastic solids [6]. The case of an ideal fluid has been studied previously [3–5, 7]. Radiation forces are one of the causes of the relative drift of solid particles situated in a fluid in an acoustic field.S. P. Timoshenko Institute of Mechanics, Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 30, No. 2, pp. 33–40, February, 1994.  相似文献   

19.
The problem under consideration is that of the stationary shape of the free surface of a viscous fluid in a steadily rotating horizontal cylinder. In the majority of investigations of this problem the thickness of the fluid layer coating the inner surface of the cylinder is assumed to be small [1–3]. The case of a near-horizontal free surface, with the bulk of the fluid at the cylinder bottom, was considered in [4], where, after considerable simplification, the governing equations were reduced to ordinary differential equations. In the present study the behavior of the free surface is investigated using a creeping flow approximation. The controlling parameters vary over a wide range. In the numerical computations a boundary element method was used. The numerical results have been confirmed experimentally.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–30, May–June, 1993.  相似文献   

20.
In many technological processes, thin extended layers of nonuniformly heated fluid are used [1–3]. If they are sufficiently thin, thermocapillary forces have a decisive influence on the occurrence and development of motion of the fluid [4–6]. Investigation of convective motion in such a layer is of great interest for estimating the intensity of heat and mass transfer in technological processes. This paper is a study of unsteady thermocapillary motion in a layer of viscous incompressible fluid with free surface in which a thermal inhomogeneity is created at the initial time. Approximate expressions are obtained for the fields of the velocity, temperature, and pressure in the fluid, and also for the shape of the free surface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 17–25, May–June, 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号