首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
In this article, we report the galvanic replacement reaction between an Ag template and HAuCl4 · 4H2O in aqueous solution transforms 33.3 nm hexagonal shape Ag to Ag@Au core-shell nanostructure in the presence of the surface-regulating polymer poly (vinyl pyrrolidone) (PVP). By controlling the molar ratio of Ag to HAuCl4 · 4H2O, the extinction peak of resultant can be continuously tuned from the blue to the near infrared sections for both absorption and scatting. The results of UV-vis, XRD, TEM, and SEM show the different characters on the Ag and Ag@Au core-shell nanostructure which suggest that the transformation of Ag into Ag@Au by controlling their dimensions as well as the thickness and porosity of their walls.  相似文献   

2.
Poly(vinyl pyrrolidone)-capped bismuth nanospheres were synthesized by a simple and convenient wet chemical method. In the process, bismuth nitrate was reduced by ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP) at 185 °C in air. PVP was used as a protecting agent to prevent oxidation of the sperical bismuth particles. PVP molecules were absorbed on the surface of bismuth nanospheres through the interaction of O–Bi bond which was confirmed by Fourier transform infrared (FT-IR) measurement. The thermal analysis shows the samples contained about 73 wt.% metallic bismuth. The optical absorption spectrum of poly(vinyl pyrrolidone)-capped bismuth nanosphere shows a strong absorption band at 275 nm.  相似文献   

3.
Platinum nanocrystals with sizes smaller than 10 nm are obtained by H2‐reduction of aqueous K2PtCl6 in the presence of different concentrations of poly (N‐vinyl‐2‐pyrrolidone; PVP:Mw ≈ 360 000) at pH = 2.5–7.0. Tetrahedral Pt nanocrystals (3–10 nm) are produced with high selectivity (73–83% by number) at moderate PVP:K2PtCl6 ratios. The co‐existing round/spheroidal crystallites are found to be smaller than the tetrahedrally shaped ones in the systems of varying K2PtCl6:PVP ratios. Careful examinations of the particle size and shape evolution of the crystallites at different stages of the crystal growth with transmission electron microscopy (TEM) and ultraviolet–visible absorption spectroscopy (UV–vis) suggest that the tetradedrally shaped Pt crystallites share the same type of nuclei with the round ones at the early stage of the crystal formation. Evolution of the tetrahedral shape happens in the later slow crystal growth. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Poly(ethylene oxide) (PEO)/LiClO4/poly(vinyl acetate) (PVAc) and PEO/LiClO4/poly(vinyl pyrrolidone) (PVP) complexes were prepared with various weight ratios of PVAc and PVP to PEO. The conductivity (σ) of the PEO/LiClO4 complex was increased in a nonlinear fashion by the presence of up to 60 wt% PVAc. PEO/LiClO4/PVAc complexes with weight percents of PVAc greater than 60 had σ's less than that of PEO/LiClO4. The σ of PEO/LiClO4 was decreased by the presence of any PVP.  相似文献   

5.
Cross-linked polyvinyl alcohol/polyvinyl pyrrolidone/zeolite fibers were prepared in the presence of potassium peroxodisulphate (K2S2O8) under the curing process by the electrospinning technique. The narrowest nanofibers of PVA/PVP (50:50) were prepared under optimum experimental conditions of 2.5 × 10?4 mol of K2S2O8, an applied voltage of 22 KV, the distance of 15 cm and the feed rate of 0.2 mL/h. The progress of the cross-linking was examined by immersion of the prepared nanofibers in water and following the swelling degrees. By raising the K2S2O8 amount and curing time, the cross-linking density was increased. X-ray diffraction (XRD) demonstrated that the crystallinity of the nanofibers was decreased by the increase of K2S2O8 and the lowest crystallinity was observed for PVA/PVP (70:30). The contact angle of nanofibers was decreased from 72° to 34 by increasing PVP ratio from 30 to 70. The morphology of the nanofibers before and after immersion in the simulated body fluid (SBF) was studied using electron scanning microscopy (SEM) and PVA/PVP (70:30) showed the highest changes in the morphology while the lowest one was observed for PVA/PVP (50:50). Moreover, the cross-linked PVA/ PVP with the ratio of 50:50 had the narrowest diameter of 200 ± 100 nm, and by addition of about 0.5% zeolite, it was even reduced more to 150 ± 50 nm. The cross-linked nanofibers (50:50) with 0.5 wt% and 1.5 wt% zeolite nanoparticles showed the tensile modules of 416.26 and 703.52 MPa, respectively, while in the absence of zeolite, it was209.25 MPa. Fibroblast L929 cells were cultured on the cross-linked PVA/PVP/zeolite (50:50:0.5) nanofiber, and the cell proliferation and growth was evaluated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Fibroblasts grew on the surface of scaffold showed good morphology and proliferation after seven days and the absorption amount was increased from 0.075 to 0.78  相似文献   

6.
We report on a simple and sensitive method for the determination of tetracycline based on its reducing action on AgNO3 in alkaline medium containing ammonia and sodium hydroxide at 65°C. As a result of this reaction, silver nanoparticles (AgNPs) are formed. The AgNPs are stabilized in solution by adding poly(vinyl pyrrolidone) as a capping agent. The formed AgNPs were identified by surface plasmon resonance absorption spectrum and transmission electron microscopy image. The plasmon absorption peak at 411 nm is proportional to the concentration of tetracycline. The calibration graph is linear in the concentration range of 0.05–5.0 mg/L with a detection limit of 0.013 mg/L. This method was applied to the determination of tetracycline in pharmaceutical products.  相似文献   

7.
Summary: A controlled fabrication of rod‐like nanostructures of cadmium sulfide (CdS) incorporated into polymer fiber matrices has been developed by an electrospinning method. Here, poly(vinyl pyrrolidone) (PVP) was used as a polymer capping reagent, utilizing the interactions of cadmium ions with the carbonyl groups in the PVP molecules. The formation of CdS nanorods inside the PVP was carried out via the reaction of Cd2+ with H2S. SEM images showed that the electrospun films of PVP/CdS are composed of fibers with a diameter between 100 and 900 nm. TEM proved that most of the CdS nanorods are incorporated in the PVP fibrous film. The diameter of the rod is about 50 nm and the length is from 100 to 300 nm.

TEM image of the CdS nanorods formed in the PVP fibrous film.  相似文献   


8.
Abstract— The spectra of absorption, fluorescence and excitation of monolayers and thin films containing chlorophyll a together with a carotenoid (cis-β-carotene, trans-β-carotene, fucoxanthin, or zeaxanthin), were measured at — 196°C. The concentration ratios used, (Chl)/(Car), were 6:1, 4:1, 3:1, 2:1, 1:1 and 1:3, and the area densities, 3·70, 2·55, 1·76, 0·71, 0·37 and 0·17 nm2/pigment molecule. In dilute monolayers, (3·70 nm2/molecule), with a constant concentration ratio (Chl)/(Car) = 3:1, evidence of three β-carotene forms, with absorption bands at 460, 500 and 520 nm (C460, C500 and C520), and of a chlorophyll a form with an absorption band at 669–672 (Chl669–672) was found. On increasing the density to 0·2–0·3 nm2/molecule, a conversion of C460 and C520 into C500, was observed, and several more additional (probably more strongly aggregated) chlorophyll a forms appeared, with absorption bands at 672–733 nm. With excess carotene [(Chi)/(Car) = 1:3] the forms C460, C500, C520 and Chl669–672 were present even in the most dense films (0·2–0·3 nm2/molecule). The same was found with other carotenoids: if one of the pigments was in excess, aggregated forms of the other tended to disappear. In the transfer of energy from carotenoids to chlorophyll a, C500 was found to be the main donor. In layers with a concentration ratio (Chl)/(Car) = 3:1, the efficiency of transfer was less than 10 per cent at the lowest density used (3·70 nm2/molecule); it increased to 50 per cent, as the density was increased to 0·20 nm2/molecule. When the relative concentration of the carotenoid was increased to (Chl)/(Car) = 1:1, the efficiency of energy transfer dropped to 25 per cent even at 0·20 nm2/molecule. It seems that the efficiency of energy transfer between carotene molecules (prior to its transfer to chlorophyll a) is low, and effective transfer occurs only between β-carotene and immediately adjacent chlorophyll a molecules.  相似文献   

9.
Blends of chitosan and poly(vinyl pyrrolidone) (PVP) have a high potential for use in various biomedical applications and in advanced drug‐delivery systems. Recently, the physical and chemical properties of these blends have been extensively characterized. However, the molecular interaction between these two polymers is not fully understood. In this study, the intermolecular interaction between chitosan and PVP was experimentally investigated using 13C cross‐polarization magic angle‐spinning nuclear magnetic resonance (13C CP/MAS NMR) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). According to these experimental results, the interaction between the polymers takes place through the carbonyl group of PVP and either the OH? C6, OH? C3, or NH? C2 of chitosan. In an attempt to identify the interacting groups of these polymers, molecular modeling simulation was performed. Molecular simulation was able to clarify that the hydrogen atom of OH? C6 of chitosan was the most favorable site to form hydrogen bonding with the oxygen atom of C?O of PVP, followed by that of OH? C3, whereas that of NH? C2 was the weakest proton donor group. The nitrogen atom of PVP was not involved in the intermolecular interaction between these polymers. Furthermore, the interactions between these polymers are higher when PVP concentrations are lower, and interactions decrease with increasing amounts of PVP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1258–1264, 2008  相似文献   

10.
The present study focuses on the proton-conducting polymer electrolytes; poly (N-vinyl pyrrolidone)–ammonium thiocyanate and poly (N-vinyl pyrrolidone)–ammonium acetate prepared by solution casting technique. The XRD analysis indicates the amorphous nature of the polymer electrolytes. The Raman spectra of the C=O vibration of pure polymer PVP at 1,663 cm?1 has been appeared as doublet in the polymer electrolytes. The introduction of this new peak in the salt-doped polymer electrolytes may be due to interaction of the cation with the polymer. The room temperature ionic conductivity σ 303κ has been found to be high, 1.7?×?10?4 S cm?1 for 80 mol% PVP–20 mol% NH4SCN and 1.5?×?10?6 S cm?1 for 75 mol% PVP–25 mol% CH3COONH4. The polymer electrolytes have been tested for their application in Zn–air battery.  相似文献   

11.
[60]Fullerenated poly(2‐hydroxyethyl methacrylate)s containing 0.6–3.0 wt % C60 were synthesized. These polymers are soluble in methanol and N,N‐dimethylformamide (DMF). [60]Fullerenated poly(2‐hydroxyethyl methacrylate)s with higher C60 contents are only sparingly soluble in DMF and virtually insoluble in other organic solvents. A loading of 1.2 wt % C60 in poly(2‐hydroxyethyl methacrylate) does not greatly affect its miscibility with poly(N‐vinyl‐2‐pyrrolidone), poly(1‐vinylimidazole), and poly(4‐vinylpyridine). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1157–1166, 2002  相似文献   

12.
A reverse phase high performance liquid chromatographic method is developed for the quantitation of glabridin in Glycyrrhiza glabra, using C18 column with acetonitrile-water containing 2% AcOH (70:30) as an eluent. Glabridin is detected by UV absorption at 280 nm after separation by the chromatographic system. Good linearity was obtained in the working range of the concentration (0.01–0.1 mg mL?1), with correlation coefficients 0.999. Limit of detection and limit of quantitation were 0.0195 and 0.065 mg mL?1. The method was validated under ICH guidelines. The described method can be utilized for routine analysis (assays and stability tests) of G. glabra extracts and Ayurvedic medicine based on Yashti-madhu.  相似文献   

13.
非共价修饰碳纳米管/二氧化钛复合材料的合成及性能   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法在聚乙烯吡咯烷酮(PVP)非共价修饰的碳纳米管表面均匀沉积二氧化钛粒子制得纳米复合材料。用TEM、XRD、FTIR、N2吸脱附等对复合材料进行了表征。结果表明:纳米二氧化钛纳米粒子均匀沉积在被修饰碳纳米管表面,且二氧化钛为纯锐钛矿晶体结构,没有金红石和板钛矿相。非共价修饰碳纳米管/二氧化钛复合材料具有良好的介孔结构,其孔径分布主要集中在6~10 nm,且比表面积与纯的二氧化钛相比明显增大,在紫外光照射下降解亚甲基蓝,相比纯的二氧化钛和碳纳米管/二氧化钛,具有较高的催化活性。  相似文献   

14.
The phase behavior of ternary poly‐(2‐vinylpyridine) (P2VPy)/poly‐(N‐vinyl‐2‐pyrrolidone) (PVP)/bis‐(4‐hydroxyphenyl)methane (BHPM) blends was studied. Fourier transform infrared spectroscopic examinations demonstrated that BHPM interacts with P2VPy and PVP through hydrogen‐bonding interactions. The addition of a sufficiently large amount of BHPM transformed an opaque blend with two glass‐transition temperatures (Tg's) to a transparent single‐Tg blend. Scanning electron microscopic studies showed that the transparent single‐Tg blend is micro‐phase‐separated at a scale of about 30 nm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1815–1823, 2001  相似文献   

15.
In our recent study, an ABA amphiphilic triblock copolymer poly(vinyl pyrrolidone)‐b‐poly(methyl methacrylate)‐b‐poly(vinyl pyrrolidone) (PVP‐b‐PMMA‐b‐PVP) was synthesized and directly blended with polyethersulfone (PES) to prepare membranes. To further investigate the effects of surface energy and miscibility on the near‐surface composition profile of the membranes, evaporation membrane and phase inversion membrane of PES/PVP‐b‐PMMA‐b‐PVP were prepared by evaporating the solvent in a vacuum oven, and by a liquid–liquid phase separation technique, respectively. The surface composition and morphology of the membranes were investigated using XPS and tapping mode atomic force microscopy, and the surface segregations of the membranes were compared and discussed. For the evaporation membrane, PVP blocks were buried below the lower surface energy PMMA blocks and PES substrate at the airside surface. For the phase inversion membrane, however, the hydrophilicity of PVP blocks were the biggest driving force because of the high speed exchange between water and solvent, and present at the membrane surface. Thus, the modified PES membrane prepared by using phase inversion method has a layer of PVP block brushes on its surface and has the better anticoagulant property, which might improve the blood compatibility of the membrane and has potential to be used in blood purification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
We compared detailed dynamics of the excited-state absorption for C60 in solution, thin films, and entrapped in an inorganic sol-gel glass matrix. Our results demonstrate that the microscopic morphology of the C60 molecules plays a crucial role in determining the relaxation dynamics. This is a key factor for applications in optical limiting for nanosecond pulses using reverse saturable absorption. We find that the dynamics of our C60-glass composites occur on long (ns) timescales, comparable to those in solution; thin film samples, by contrast, show rapid decay (<20 picoseconds). These results demonstrate that C60-sol-gel glass composites contain C60 in a molecular dispersion, and are suitable candidates for solid-state optical limiting. Multispectral analysis of the decay dynamics in solution allows accurate determination of both the intersystem crossing time (600±100ps) and the relative strengths of the singlet and triplet excited-state cross sections as a function of wavelength from 450–950 nm. The triplet excited-state cross section is greater than that for the singlet excited-state over the range from 620–810 nm.  相似文献   

17.
A simple method for preparation of nickel-fullerene coordination complexes has been developed. NiLCl2(Br2) and C60 mixtures are reduced by zinc dust upon heating in o-dichlorobenzene. Diffusion of hexane into the reaction mixture results in formation of crystals of NiL(η2-C60)?solvent (L = 1,2-bis(diphenylphosphino)ethane (dppe, 1), 1,3-bis(diphenylphosphino)propane (dppp, 2) and 1,1′-bis(diphenylphosphino)ferrocene (dppf, 3)). Nickel coordinates to the 6–6 bonds of C60 by η2- type and has distorted square-planar geometry. The average Ni–C(C60) bond lengths are 1.936(6)–1.977(3)?Å. We found that increase in the P(L)–Ni–P(L) angle and the dihedral angle between the PNiP and CNiC planes results in elongation of the Ni–C(C60) and Ni–P(L) bonds by 0.04–0.06?Å. Complexes 1–3 contain zero-valent nickel since fullerenes are neutral according to the IR- and visible-NIR spectra. Some of the IR-active bands of C60 are split into three bands in spectra of 1–3 due to C60 symmetry lowering, and the F1u(4) C60 mode is shifted to lower wave numbers due to the π-back donation. The formation of 1–3 is accompanied by appearance of new bands in the visible range at 435–447 and 661–680 nm.  相似文献   

18.
Solid polymer electrolytes based on poly(vinyl pyrrolidone) (PVP) complexed with potassium periodide (KIO4) salt at different weight percent ratios were prepared using solution-cast technique. X-ray diffraction (XRD) results revealed that the amorphous nature of PVP polymer matrix increased with the increase of KIO4 salt concentration. The complexation of the salt with the polymer was confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The ionic conductivity was found to increase with the increase of temperature as well as dopant concentration. The maximum ionic conductivity (1.421 × 10−4 S cm−1) was obtained for 15 wt% KIO4 doped polymer electrolyte at room temperature. The variation of ac conductivity with frequency obeyed Jonscher power law. The dynamical aspects of electrical transport process in the electrolyte were analyzed using complex electrical modulus. The peaks found in the electric modulus plots have been characterized in terms of the stretched exponential parameter. Optical absorption studies were performed in the wavelength range 200–600 nm and the absorption band energies (direct band gap and indirect band gap) values were evaluated. Using these polymer electrolyte films electrochemical cells were fabricated and their discharge characteristics were studied.  相似文献   

19.
A series of amphiphilic graft copolymers consisting of poly(vinyl chloride) (PVC) main chains and poly(vinyl pyrrolidone) (PVP) side chains, i.e. PVC‐g‐PVP, was synthesized via atom transfer radical polymerization (ATRP), as confirmed by 1H NMR, FT‐IR spectroscopy, and gel permeation chromatography (GPC). Transmission electron microscope (TEM) and small angle X‐ray scattering (SAXS) analysis revealed the microphase‐separated structure of PVC‐g‐PVP and the domain spacing increased from 21.4 to 23.9 nm with increasing grafting degree. All the membranes exhibited completely amorphous structure and high Young's modulus and tensile strength, as revealed by wide angle X‐ray scattering (WAXS) and universal testing machine (UTM). Permeation experimental results using a CO2/N2 (50/50) mixture indicated that as an amount of PVP in a copolymer increased, CO2 permeability increased without the sacrifice of selectivity. For example, the CO2 permeability of PVC‐g‐PVP with 36 wt% of PVP at 35°C was about four times higher than that of the pristine PVC membrane. This improvement resulted from the increase of diffusivity due to the disruption of chain packing in PVC by the grafting of PVP, as confirmed by WAXS analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Chemical functionalization of C60 fullerene with one to six carbene (CH2) molecule(s) has been investigated using density functional theory. We have found that the reaction is regioselective so that a CH2 molecule prefers to be adsorbed atop a C–C bond which is shared between two hexagonal rings of the C60, releasing energy of ?3.95 eV. Singly occupied molecular orbital (SOMO) of the CH2 interacts with LUMO of the C60 via a [2 + 1] cycloaddition reaction. Energy of the reaction and work function of the system are decreased by increasing the number of adsorbed CH2 molecules. The HOMO/LUMO energy gap of C60 is slightly changed and the electron emission from its surface is facilitated upon the functionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号