首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A shortest path connecting two vertices u and v is called a u-v geodesic. The distance between u and v in a graph G, denoted by dG(u,v), is the number of edges in a u-v geodesic. A graph G with n vertices is panconnected if, for each pair of vertices u,vV(G) and for each integer k with dG(u,v)?k?n-1, there is a path of length k in G that connects u and v. A graph G with n vertices is geodesic-pancyclic if, for each pair of vertices u,vV(G), every u-v geodesic lies on every cycle of length k satisfying max{2dG(u,v),3}?k?n. In this paper, we study sufficient conditions of geodesic-pancyclic graphs. In particular, we show that most of the known sufficient conditions of panconnected graphs can be applied to geodesic-pancyclic graphs.  相似文献   

2.
For a poset P=(X,≤), the upper bound graph (UB-graph) of P is the graph U=(X,EU), where uvEU if and only if uv and there exists mX such that u,vm. For a graph G, the distance two graph DS2(G) is the graph with vertex set V(DS2(G))=V(G) and u,vV(DS2(G)) are adjacent if and only if dG(u,v)=2. In this paper, we deal with distance two graphs of upper bound graphs. We obtain a characterization of distance two graphs of split upper bound graphs.  相似文献   

3.
Given graphs G, H, and lists L(v) ? V(H), v ε V(G), a list homomorphism of G to H with respect to the lists L is a mapping f : V(G) → V(H) such that uv ε E(G) implies f(u)f(v) ε E(H), and f(v) ε L(v) for all v ε V(G). The list homomorphism problem for a fixed graph H asks whether or not an input graph G, together with lists L(v) ? V(H), v ε V(G), admits a list homomorphism with respect to L. In two earlier papers, we classified the complexity of the list homomorphism problem in two important special cases: When H is a reflexive graph (every vertex has a loop), the problem is polynomial time solvable if H is an interval graph, and is NP‐complete otherwise. When H is an irreflexive graph (no vertex has a loop), the problem is polynomial time solvable if H is bipartite and H is a circular arc graph, and is NP‐complete otherwise. In this paper, we extend these classifications to arbitrary graphs H (each vertex may or may not have a loop). We introduce a new class of graphs, called bi‐arc graphs, which contains both reflexive interval graphs (and no other reflexive graphs), and bipartite graphs with circular arc complements (and no other irreflexive graphs). We show that the problem is polynomial time solvable when H is a bi‐arc graph, and is NP‐complete otherwise. In the case when H is a tree (with loops allowed), we give a simpler algorithm based on a structural characterization. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 61–80, 2003  相似文献   

4.
The Wiener index of a graph G is defined as W(G)=∑ u,v d G (u,v), where d G (u,v) is the distance between u and v in G and the sum goes over all the pairs of vertices. In this paper, we first present the 6 graphs with the first to the sixth smallest Wiener index among all graphs with n vertices and k cut edges and containing a complete subgraph of order nk; and then we construct a graph with its Wiener index no less than some integer among all graphs with n vertices and k cut edges.  相似文献   

5.
Let Π = {S1, S2, . . . , Sk} be an ordered partition of the vertex set V (G) of a graph G. The partition representation of a vertex vV (G) with respect to Π is the k-tuple r(v|Π) = (d(v, S1), d(v, S2), . . . , d(v, Sk)), where d(v, S) is the distance between v and a set S. If for every pair of distinct vertices u, vV (G), we have r(u|Π) ≠ r(v|Π), then Π is a resolving partition and the minimum cardinality of a resolving partition of V (G) is called the partition dimension of G. We study the partition dimension of circulant graphs, which are Cayley graphs of cyclic groups. Grigorious et al. [On the partition dimension of circulant graphs] proved that pd(Cn(1, 2, . . . , t)) ≥ t + 1 for n ≥ 3. We disprove this statement by showing that if t ≥ 4 is even, then there exists an infinite set of values of n, such that . We also present exact values of the partition dimension of circulant graphs with 3 generators.  相似文献   

6.
The signed distance-k-domination number of a graph is a certain variant of the signed domination number. If v is a vertex of a graph G, the open k-neighborhood of v, denoted by N k (v), is the set N k (v) = {u: uv and d(u, v) ⩽ k}. N k [v] = N k (v) ⋃ {v} is the closed k-neighborhood of v. A function f: V → {−1, 1} is a signed distance-k-dominating function of G, if for every vertex . The signed distance-k-domination number, denoted by γ k,s (G), is the minimum weight of a signed distance-k-dominating function on G. The values of γ 2,s (G) are found for graphs with small diameter, paths, circuits. At the end it is proved that γ 2,s (T) is not bounded from below in general for any tree T.  相似文献   

7.
Even graphs     
A nontrivial connected graph G is called even if for each vertex v of G there is a unique vertex v such that d(v, v ) = diam G. Special classes of even graphs are defined and compared to each other. In particular, an even graph G is called symmetric if d(u, v) + d(u, v ) = diam G for all u, vV(G). Several properties of even and symmetric even graphs are stated. For an even graph of order n and diameter d other than an even cycle it is shown that n ≥ 3d – 1 and conjectured that n ≥ 4d – 4. This conjecture is proved for symmetric even graphs and it is shown that for each pair of integers n, d with n even, d ≥ 2 and n ≥ 4d – 4 there exists an even graph of order n and diameter d. Several ways of constructing new even graphs from known ones are presented.  相似文献   

8.
Let G=(V,E) be a simple graph. A subset SV is a dominating set of G, if for any vertex uV-S, there exists a vertex vS such that uvE. The domination number of G, γ(G), equals the minimum cardinality of a dominating set. A Roman dominating function on graph G=(V,E) is a function f:V→{0,1,2} satisfying the condition that every vertex v for which f(v)=0 is adjacent to at least one vertex u for which f(u)=2. The weight of a Roman dominating function is the value f(V)=∑vVf(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on G. In this paper, for any integer k(2?k?γ(G)), we give a characterization of graphs for which γR(G)=γ(G)+k, which settles an open problem in [E.J. Cockayne, P.M. Dreyer Jr, S.M. Hedetniemi et al. On Roman domination in graphs, Discrete Math. 278 (2004) 11-22].  相似文献   

9.
Given a graph G and integers p,q,d1 and d2, with p>q, d2>d1?1, an L(d1,d2;p,q)-labeling of G is a function f:V(G)→{0,1,2,…,n} such that |f(u)−f(v)|?p if dG(u,v)?d1 and |f(u)−f(v)|?q if dG(u,v)?d2. A k-L(d1,d2;p,q)-labeling is an L(d1,d2;p,q)-labeling f such that maxvV(G)f(v)?k. The L(d1,d2;p,q)-labeling number ofG, denoted by , is the smallest number k such that G has a k-L(d1,d2;p,q)-labeling. In this paper, we give upper bounds and lower bounds of the L(d1,d2;p,q)-labeling number for general graphs and some special graphs. We also discuss the L(d1,d2;p,q)-labeling number of G, when G is a path, a power of a path, or Cartesian product of two paths.  相似文献   

10.
Let G be a graph of order n and k ≥ 0 an integer. It is conjectured in [8] that if for any two vertices u and v of a 2(k + 1)‐connected graph G,d G (u,v) = 2 implies that max{d(u;G), d(v;G)} ≥ (n/2) + 2k, then G has k + 1 edge disjoint Hamilton cycles. This conjecture is true for k = 0, 1 (see cf. [3] and [8]). It will be proved in this paper that the conjecture is true for every integer k ≥ 0. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 8–20, 2000  相似文献   

11.
Consider a simple random walk on a connected graph G=(V, E). Let C(u, v) be the expected time taken for the walk starting at vertex u to reach vertex v and then go back to u again, i.e., the commute time for u and v, and let C(G)=maxu, vVC(u, v). Further, let 𝒢(n, m) be the family of connected graphs on n vertices with m edges, , and let 𝒢(n)=∪m𝒢(n, m) be the family of all connected n‐vertex graphs. It is proved that if G∈(n, m) is such that C(G)=maxH∈𝒢(n, m)C(H) then G is either a lollipop graph or a so‐called double‐handled lollipop graph. It is further shown, using this result, that if C(G)=maxH∈𝒢(n)C(H) then G is the full lollipop graph or a full double‐handled lollipop graph with [(2n−1)/3] vertices in the clique unless n≤9 in which case G is the n‐path. ©2000 John Wiley & Sons, Inc. Random Struct. Alg., 16, 131–142, 2000  相似文献   

12.
On the adjacent-vertex-strongly-distinguishing total coloring of graphs   总被引:6,自引:0,他引:6  
For any vertex u∈V(G), let T_N(U)={u}∪{uv|uv∈E(G), v∈v(G)}∪{v∈v(G)|uv∈E(G)}and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C_f(u)={f(x)|x∈TN(U)}. For any two adjacent vertices x and y of V(G)such that C_f(x)≠C_f(y), we refer to f as a k-avsdt-coloring of G("avsdt"is the abbreviation of"adjacent-vertex-strongly- distinguishing total"). The avsdt-coloring number of G, denoted by X_(ast)(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We proveΔ(G) 1≤X_(ast)(G)≤Δ(G) 2 for any tree or unique cycle graph G.  相似文献   

13.
《Discrete Applied Mathematics》2002,116(1-2):115-126
For vertices u and v in an oriented graph D, the closed interval I[u,v] consists of u and v together with all vertices lying in a uv geodesic or vu geodesic in D. For SV(D), I[S] is the union of all closed intervals I[u,v] with u,vS. A set S is convex if I[S]=S. The convexity number con(D) is the maximum cardinality of a proper convex set of V(D). The nontrivial connected oriented graphs of order n with convexity number n−1 are characterized. It is shown that there is no connected oriented graph of order at least 4 with convexity number 2 and that every pair k, n of integers with 1⩽kn−1 and k≠2 is realizable as the convexity number and order, respectively, of some connected oriented graph. For a nontrivial connected graph G, the lower orientable convexity number con(G) is the minimum convexity number among all orientations of G and the upper orientable convexity number con+(G) is the maximum such convexity number. It is shown that con+(G)=n−1 for every graph G of order n⩾2. The lower orientable convexity numbers of some well-known graphs are determined, with special attention given to outerplanar graphs.  相似文献   

14.
A Hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a Hamiltonian cycle that encounters v1, v2, …, vk in this order. Define f(k, n) as the smallest integer m for which any graph on n vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if n is sufficiently large in terms of k. Let g(k, n) = − 1. More precisely, we show that f(k, n) = g(k, n) if n ≥ 11k − 3. Furthermore, we show that f(k, n) ≥ g(k, n) for any n ≥ 2k. Finally we show that f(k, n) > g(k, n) if 2kn ≤ 3k − 6. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 17–25, 1999  相似文献   

15.
For a graph G, a random n‐lift of G has the vertex set V(G)×[n] and for each edge [u, v] ∈ E(G), there is a random matching between {u}×[n] and {v}×[n]. We present bounds on the chromatic number and on the independence number of typical random lifts, with G fixed and n→∞. For the independence number, upper and lower bounds are obtained as solutions to certain optimization problems on the base graph. For a base graph G with chromatic number χ and fractional chromatic number χf, we show that the chromatic number of typical lifts is bounded from below by const ? and also by const ? χf/log2χf (trivially, it is bounded by χ from above). We have examples of graphs where the chromatic number of the lift equals χ almost surely, and others where it is a.s. O(χ/logχ). Many interesting problems remain open. © 2002 John Wiley & Sons, Inc. Random Struct. Alg., 20, 1–22, 2002  相似文献   

16.
For a given graph G of order n, a k-L(2,1)-labelling is defined as a function f:V(G)→{0,1,2,…k} such that |f(u)-f(v)|?2 when dG(u,v)=1 and |f(u)-f(v)|?1 when dG(u,v)=2. The L(2,1)-labelling number of G, denoted by λ(G), is the smallest number k such that G has a k-L(2,1)-labelling. The hole index ρ(G) of G is the minimum number of integers not used in a λ(G)-L(2,1)-labelling of G. We say G is full-colorable if ρ(G)=0; otherwise, it will be called non-full colorable. In this paper, we consider the graphs with λ(G)=2m and ρ(G)=m, where m is a positive integer. Our main work generalized a result by Fishburn and Roberts [No-hole L(2,1)-colorings, Discrete Appl. Math. 130 (2003) 513-519].  相似文献   

17.
A function f : V→{−1,1} defined on the vertices of a graph G=(V,E) is a signed 2-independence function if the sum of its function values over any closed neighbourhood is at most one. That is, for every vV, f(N[v])1, where N[v] consists of v and every vertex adjacent to v. The weight of a signed 2-independence function is f(V)=∑f(v), over all vertices vV. The signed 2-independence number of a graph G, denoted αs2(G), equals the maximum weight of a signed 2-independence function of G. In this paper, we establish upper bounds for αs2(G) in terms of the order and size of the graph, and we characterize the graphs attaining these bounds. For a tree T, upper and lower bounds for αs2(T) are established and the extremal graphs characterized. It is shown that αs2(G) can be arbitrarily large negative even for a cubic graph G.  相似文献   

18.
Let k ≥ 2 be an integer. A function f: V(G) → {?1, 1} defined on the vertex set V(G) of a graph G is a signed k-independence function if the sum of its function values over any closed neighborhood is at most k ? 1. That is, Σ xN[v] f(x) ≤ k ? 1 for every vV(G), where N[v] consists of v and every vertex adjacent to v. The weight of a signed k-independence function f is w(f) = Σ vV(G) f(v). The maximum weight w(f), taken over all signed k-independence functions f on G, is the signed k-independence number α s k (G) of G. In this work, we mainly present upper bounds on α s k (G), as for example α s k (G) ≤ n ? 2?(Δ(G) + 2 ? k)/2?, and we prove the Nordhaus-Gaddum type inequality $\alpha _S^k \left( G \right) + \alpha _S^k \left( {\bar G} \right) \leqslant n + 2k - 3$ , where n is the order, Δ(G) the maximum degree and $\bar G$ the complement of the graph G. Some of our results imply well-known bounds on the signed 2-independence number.  相似文献   

19.
20.
Let Y be a subset of real numbers. A Y-dominating function of a graph G=(V,E) is a function f:VY such that for all vertices vV, where NG[v]={v}∪{u|(u,v)∈E}. Let for any subset S of V and let f(V) be the weight of f. The Y-domination problem is to find a Y-dominating function of minimum weight for a graph G=(V,E). In this paper, we study the variations of Y-domination such as {k}-domination, k-tuple domination, signed domination, and minus domination for some classes of graphs. We give formulas to compute the {k}-domination, k-tuple domination, signed domination, and minus domination numbers of paths, cycles, n-fans, n-wheels, n-pans, and n-suns. Besides, we present a unified approach to these four problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. This paper also gives complexity results for the problems on doubly chordal graphs, dually chordal graphs, bipartite planar graphs, chordal bipartite graphs, and planar graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号