首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and Crystal-Structure of Na2Mn3O7 Single crystals of Na2Mn3O7 have been grown hydrothermally applying high oxygen pressure (p = 2 kbar). The new compound cystallizes triclinic; space group P1 ; a = 6.636(6) Å, b = 6.854(6) Å, c = 7.548(6) Å, α = 105.76(6)°, β = 106.86(6)°, γ = 111.60(6)°; Z = 2. The crystal structure has been solved and refined to R = 7.9% and Rw = 6.2% (diffractometer data, 1044 independent reflexions). The crystal structure consists of Mn3O72? anions with manganese coordinated octahedrally by oxygen. These layered anions are hold together by Na+ ions (coordination numbers 5 and 6).  相似文献   

2.
On Na5HI2O10 · 14 H2O Single crystals of Na5HI2O10 · 14 H2O were obtained for the first time. According to the results of an X-ray crystal structure determination (P1 , a = 8.450(7), b = 8.533(6), c = 9.066(6) Å, α = 76.96(6), β = 62.94(5), γ = 86.98(6°, Z = 1, 4970 diffractometer data) iodine is in a distorted octahedral coordination. Two IO6 polyhedra are connected by a common edge forming dimeric anions H2I2O104?, the site symmetry is 1 . Sodium exhibits C.N. 6 (mainly hydrate). A 3-d network is formed largely by H-bonds.  相似文献   

3.
4.
Selenoarsenates from Aqueous Solutions. Crystal Structures of Na3AsO3Se · 12 H2O and Na3AsSe4 · 9 H2O Selenoarsenates are obtained from aqueous solutions as colourless hydrated salts by reactions either of As2O3 with NaOH and selenium or of Na2Se with As2Se3 and selenium under strictly anaerobic conditions. Besides of tetrahedral anions AsO3Se3− and AsSe43−, extensive hydrogen bridge systems with rather strong O H …︁s Se bonds determine the structures. Na3AsO3Se · 12 H2O is orthorhombic (P212121) with a = 9.220(3), b = 13.018(3), c = 14.048(4) Å, Z = 4. Cubic Na3AsSe4 ·s 9H2O (P213) with a = 12.149(3) Å is isotypic to Schlippe's salt, Na3SbS4 · 9 H2O. The full X-ray structure analyses from four-circle diffractometer data show the selenium atoms of the AsO3Se3− and AsSe43− anions to be H-acceptors in six Se …︁ H O hydrogen bridges with d(Se …︁ O) = 3.357–3.693 Å and d(Se …︁ H) = 2.47–2.89 Å. The As Se bond in AsO3Se3− (2.283 Å) is shorter than in AsSe43− (2.319 Å).  相似文献   

5.
The Crystal Structure of the Sodium Oxohydroxoaluminate Hydrate Na2[Al2O3(OH)2] · 1.5 H2O The crystal structure of the sodium oxohydroxoaluminate hydrate Na2[Al2O3(OH)2] ·s 1.5 H2O (up to now described as Na2O · Al2O3 · 2.5 H2O and Na2O · Al2O3 · 3 H2O, respectively) was solved. The X-ray single crystal diffraction analysis (tetragonal, space group P-421m, a = 10.522(1) Å, c = 5.330(1) Å, Z = 4) results in a polymeric layered structure, consisting of AlO3/2(OH) tetrahedral groups. Between these layers the Na+ ions are situated, which form tetrameric groups of face-linked NaO6 octahedra. The involved O2? ions are due to Al? O? Al bridges, Al? OH groups and water of crystallization. 27Al and 23Na MAS NMR investigations confirm the crystal structure analysis. The relations between the crystallization behaviour of the compound and the constitution of the aluminate anions in the corresponding sodium aluminate solution and in the solid, respectively, are discussed.  相似文献   

6.
New Heteropolyanions of the M2X2W20 Structure Type with Antimony(III) as a Heteroatom The syntheses of two new heteropolyanions of the M2X2W20 structure type are presented. They are characterized by X‐ray structure analysis and vibrational spectra. Na6(NH4)4[Zn2(H2O)6(WO2)2(SbW9O33)2]·36H2O (1) is monoclinic (P21/n) with a = 12.873(3)Å, b = 25.303(4)Å, c = 15.975(4)Å and β = 91.99(3)°. Na10[Mn2(H2O)6(WO2)2(SbW9O33)2]·40H2O (2) also crystallizes in the space group P21/n with a = 12.892(3)Å, b = 25.219(5)Å, c = 16.166(3)Å and β = 94.41(3)°. Both polyanions are isostructural to anions of this structure type containing other heteroatoms. They are built up by two β‐B‐SbW9 fragments, which are derived from defect structures of the Keggin anion. These subÍunits are connected by two formal WO2 groups with further stabilization by addition of two M(H2O)3 groups (M = ZnII, MnII, FeIII, CoII) leading to the M2X2W20‐type heteropolytungstates.  相似文献   

7.
Te(OH)6 · 2Na3P3O9 · 6H2O, is hexagonal (P63/m) with a = 11,67(1), c = 12,12(1) Å, Z = 2 and Dx = 2,225 g/cm3. Te(OH)6 · K3P3O9 · 2H2O, is monoklin (P21/c) with a = 19,61(5), b = 7,456(1), c = 14,84(6) Å, = 108,01(4), Z = 4 and Dx = 2,506 g/cm3. Both compounds are the first examples of phosphate tellurates in which the anion phosphate is condensed to the ring anion P3O9. As in phosphate tellurates already described the phosphate groups are independent of the TeO6 octahedra.  相似文献   

8.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

9.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

10.
Yu-Fen Xiu  Li Xu 《中国化学》1992,10(2):130-137
The synthesis and the structural characterization of the title compound H2Na3[W3O(CCH3)-(O2CCH3)6(H2O)3][H2W12O40]·13.5H2O are described. It is known that the mixed oxo-ethylidynecapped tritungsten cluster can be obtained by Zn dust reduction of Na2WO4·2H2O in acetic anhydride. The title compound has been characterized by X-ray diffraction, UV/VIS and 1H NMR spectra. The tungsten atoms in the cluster cation and anion are in the oxidation states of W(IV) and W(VI) respectively. The crystal is rhombohedral with the space group R32, a = 17.058 (3)Å, c = 49.665 (9)Å, γ=120°, V=12516(9)Å3, Z=6, final R = 0.037 for 2071 reflections with I ≥3σ (I). Both the cluster cation and anion have a C3 symmetry. The important interatomic distances in angstroms for the cluster cation are: W—W, 2.730(2); W—μ3?O, 2.00; W—O (carboxy1), 2.12; W—Ot 2.18 (2).  相似文献   

11.
Contributions on the Bonding Behaviour of Oxygen in Inorganic Solids. III [1] Mn2P2O7, Mn2P4O12 und Mn2Si(P2O7)2 — Crystal Growth, Structure Refinements and Electronic Spectra of Manganese(II) Phosphates By chemical vapour transport reactions in a temperature gradient single crystals of Mn2P2O7 (1050 → 950 °C) and Mn2P4O12 (850 → 750 °C) have been obtained using P/I mixtures as transport agent. Mn2Si(P2O7)2 was crystallized by isothermal heating (850 °C, 8d; NH4Cl as mineralizer) of Mn2P4O12 und SiO2. In Mn2Si(P2O7)2 [C 2/c, a = 17.072(1)Å, b = 5.0450(4)Å, c = 12.3880(9)Å, β = 103.55(9)°, 1052 independent reflections, 97 variables, R1 = 0.023, wR2 = 0.061] the Mn2+ ions show compressed octahedral coordination (d¯Mn—O = 2.19Å). The mean distance d¯Mn—O = 2.18Å was found for the radially distorted octahedra [MnO6] in Mn2P4O12 [C 2/c, Z = 4, a = 12.065(1)Å, b = 8.468(1)Å, c = 10.170(1)Å, β = 119.29(1)°, 2811 independent reflections, 85 variables, R1 = 0.025, wR2 = 0.072]. Powder reflectance spectra of the three pink coloured manganese(II) phosphates have been measured. The spectra show clearly the influence of the low‐symmetry ligand fields around Mn2+. Observed d—d electronic transition energies and the results of calculations within the framework of the angular overlap model (AOM) are in good agreement. Bonding parameters for the manganese‐oxygen interaction in [Mn2+O6] chromophors as obtained from the AOM treatment (B, C, Trees correction α, eσ, eπ) are discussed.  相似文献   

12.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

13.
Synthesis of [enH2][Mn3(V2O7)2(H2O)2] 1, the first of a new class of organically derivatized mixed metal oxides, is achieved at pH 8 and 140°C by hydrothermal reaction of [Mn3O(OAc)6(py)3][BF4], V2O5, NH2CH2CH2NH2 (en) and H3BO3 in a 0.67: 1: 6: 10 ratio. Crystals of 1 are triclinic P-1, a=5.743(1) Å, b=7.931(1) Å, c=9.313(1) Å, α=68.54(1), β=85.78(1), γ=84.50(1)°, V=392.62(9) Å3. The X-ray structure refined to R=0.025. Compound 1 has an anionic open 3-D framework based on linear tri-manganese units of edge shared [Mn(II)O6] octahedra connected through divanadate [V2O7] groups. The organic counterions are located in 1-D tunnels generated from six-membered [Mn2V4] rings. The temperature dependent magnetic susceptibility of 1 indicates a paramagnetic to anti-ferromagnetic transition with a Néel temperature of 10 K.  相似文献   

14.
Nonasodium Bis(hexahydroxoaluminate) Trihydroxide Hexahydrate (Na9[Al(OH)6]2(OH)3 · 6H2O) – Crystal Structure, NMR Spectroscopy and Thermal Behaviour The crystal structure of the nonasodium bis(hexahydroxoaluminate) trihydroxide hexahydrate Na9[Al(OH)6]2(OH)3 · 6H2O (4.5 Na2O Al2O3 · 13.5 H2O) (up to now described as 3 Na2O · Al2O3 · 6H2O, 4Na2O · Al2O3 · 13 H2O and [3 Na2O · Al2O3 · 6H2O] [xNaOH · yH2O], respectively) was solved. The X-ray single crystal diffraction analysis (triclinic, space group P1 , a = 8.694(1) Å, b = 11.344(2) Å, c = 11.636(3) Å, α = 74.29(2)°, β = 87.43(2)°, γ = 70.66(2)°, Z = 2) results in a structure, consisting of monomeric [Al(OH)6]3? aluminate anions, which are connected by NaO6 octahedra groups. Furthermore the structure contains both, two hydroxide anions only surrounded by water of crystallization and OH groups of [Al(OH)6]3? aluminate anions and a hydroxide anion involved in three NaO6 coordination octahedra directly and moreover connected with a water molecule by hydrogen bonding. The results of 27Al and 23Na-MAS-NMR investigations, the thermal behaviour of the compound and possible relations between the crystal structure and the conditions of coordination in the corresponding sodium aluminate solution are discussed as well.  相似文献   

15.
The crystal structures of two (hexafluoroacetylacetonato)copper(II) complexes with 3-imidazoline nitroxide radicals, [Cu(C5HF6O2)2]3 (C14H19N2O)2 (I) and [Cu(C5HF6O2)2]3 (C13H17N2O3)2 (II), have been determined. The compounds are triclinic (PI, Z=1) with a=8.730(2), b=10.357(2), c=21.996(5) Å, α=103.24(2), β=94.03(2), γ=95.04(2)0, V=1920(1) Å3 for I and a=8.679(2), b=14.769(4), c=15.368(4) Å, α=85.58(2), β=96.25(1), γ=104.60(1)0, V=1893(1) Å3 for II. Complexes I and II are molecular. The trinuclear molecules are centrosymmetric relative to the Cu(1) atom. The coordination polyhedron of Cu(1) is a square bipyramid formed by the O atoms of the hfac anions and nitroxide radicals (average Cu?Ohfac 1.92(1) for I and 1.93(1) Å for II; Cu?ON?O 2.47(1) for I and 2.56(1) Å for II). The coordination polyhedron of Cu(2) is a trigonal bipyramid formed by the O atoms of the hfac anions (Cu?Ohfac 1.91(1)–2.12(1) for I and 1.91(1)–2.09(1) Å for II) and an imine N atom of the radical (Cu(2)?N(2) 2.00(1) for I and 2.03(1) Å for II). The molecules are linked by van der Waals forces.  相似文献   

16.
Preparation and Structure of LaNb5O14 Single crystals of LaNb5O14 could be prepared by chemical transport reactions (T2 → T1; T2 = 1050°C; T1 = 950°C) using chlorine as transport agent. LaNb5O14 crystallizes in the orthorhombic space group Pbem with cell dimensions a = 3.8749(2) Å; b = 12.4407(6) Å and c = 20.2051(9) Å; Z = 4; R = 6.28%, Rw = 3.74%. The structure consists of two types of Nb? O-polyhedra. Especially remarkable are chains of edge-sharing pentagonal NbO7-bipyramids, which are interconnected by corner-sharing NbO6-octahedra. Tunnels running in a-direction are created by this framework of NbO6- and NbO7-polyhedra. Lanthanum atoms are located in these tunnels at levels inbetween the niobium atoms. The relationship to O? LaTa3O9 and M? CeTa3O9 type structures will be discussed.  相似文献   

17.
Rb6Mn2O6 was prepared via the azide/nitrate route. Stoichiometric mixtures of the precursors (Mn3O4, RbN3 and RbNO3) were heated in a special regime up to 500 °C and annealed at this temperature for 75 h in silver crucibles. Single crystals have been grown by annealing a mixture with a slight excess of rubidium components at 450 °C for 500 h. According to the single crystal structure analysis, Rb6Mn2O6 is isotypic to K6Mn2O6, and crystallizes in the monoclinic space group P21/c with a = 6.924(1) Å, b = 11.765(2) Å, c = 7.066(1) Å, β = 99.21(3)°, 2296 independent reflections, R1 = 5.23 % (all data). Manganese is tetrahedrally coordinated and two tetrahedra are linked by sharing a common edge, forming a dimer [Mn2O6]6−. The magnetic behavior has been investigated.  相似文献   

18.
Syntheses of the sky blue complex compounds [Ni(H2O)3(phen)(C5H6O4)] · H2O ( 1 ) and [Ni(H2O)2(phen)(C5H6O4)] ( 2 ) were carried out by the reactions of 1,10‐phenanthroline monohydrate, glutaric acid, NiSO4 · 6 H2O and Na2CO3 in CH3OH/H2O at pH = 6.9 and 7.5, respectively. The crystal structure of 1 (P 1 (no. 2), a = 14.289 Å, b = 15.182 Å, c = 15.913 Å, α = 67.108°, β = 87.27°, γ = 68.216°, V = 2934.2 Å3, Z = 2) consists of hydrogen bonded [Ni(H2O)3‐ (phen)(C5H6O4)]2 dimers and H2O molecules. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, three water O atoms and one carboxyl O atom from one monodentate glutarato ligand (d(Ni–N) = 2.086, 2.090 Å; d(Ni–O) = 2.064–2.079 Å). Through the π‐π stacking interactions and intermolecular hydrogen bonds, the dimers are assembled to form 2 D layers parallel to (0 1 1). The crystal structure of 2 (P21/n (no. 14), a = 7.574 Å, b = 11.938 Å, c = 18.817 Å, β = 98.48°, V = 1682.8 Å3, Z = 4) contains [Ni(H2O)2(phen)(C5H6O4)2/2] supramolecular chains extending along [010]. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, two water O atoms and two carboxyl O atoms from different bis‐monodentate glutarato ligands with d(Ni–N) = 2.082, 2.105 Å and d(Ni–O) = 2.059–2.087 Å. The supramolecular chains are assembled into a 3 D network by π‐π stacking interactions and interchain hydrogen bonds. A TG/DTA of 2 shows two endothermic effects at 132 °C and 390 °C corresponding to the complete dehydration and the lost of phen.  相似文献   

19.
The hydrothermal reaction of VOSO4, As2O5, piperazine and H2O produces [H2N(CH2)4NH2]4[β‐As8V14O42(SO4)]·2HSO4 ( 1 ), which is the first arsenic‐vanadium cluster containing a spherical β‐As8V14O42 shell. The structure of this compound was characterized by single crystal X‐ray diffraction, elemental analysis, TG, and IR spectrum. Crystal data for 1 : Orthorhombic, Cmcm, a = 15.369(1) Å, b = 16.404(1) Å, c = 25.772(1) Å, V = 6497.4(9) Å3, Z = 4.  相似文献   

20.
The blue mixed-crystal title compound Na15[MoMoO462H14 (H2O)70]0.5[MoMoO457H14 · (H2O)68]0.5 · ca. 400 H2O ≡ Na15[ 1 a ]0.5[ 1 b ]0.5 · ca. 400 H2O 1 , which crystallizes in the triclinic space group P 1 (a = 30.785(2), b = 32.958(2), c = 47.318(3) Å, α = 90.53(1), β = 89.86(1), γ = 96.85(1)°, V = 47665(6) Å3, Z = 2, Dcalc = 2.149 g cm–3), precipitates within one day when an acidic (pH ≈ 1) aqueous solution of sodium molybdate (because of the extremely high solubility of the reaction product used in relatively high concentration) is reduced by sodium dithionite. 1 contains hitherto unknown pure molybdenum-oxide based, nanosized, ring-shaped, crystallographically independent cluster anions of the type {Mo154} 1 a and {Mo152} 1 b , the lacunary-type analogue of 1 a . Using the same reducing agent but in the presence of a reagent with a high affinity to the specific {Mo2}-type building unit (also a leaving group) of 1 a , such as formic acid, the compound Na22[MoMoO442H14(H2O)58] · ca. 250 H2O 2 (space group P 1, a = 24.724(1), b = 35.726(2), c = 44.608(3) Å, α = 93.25(1), β = 93.51(1), γ = 106.72(1)°, V = 37552(4) Å3, Z = 2, Dcalc = 2.401 g cm–3) is obtained in which the giant rings, having four missing {Mo2} units compared to 1 a , are linked to chains. Until now, similar chain-type compounds could only be obtained using a non-well-defined synthetic method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号