首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Structural rearrangements during the temperature-induced shrinkage of amorphous polycarbonate after its tensile drawing below and above the glass transition temperature, rolling at room temperature, and solvent crazing have been studied with the use of the direct microscopic procedure. This evidence demonstrates that the character of structural rearrangements during the temperature-induced shrinkage of the oriented amorphous polymer is primarily controlled by the temperature and mode of deformation. In the case of the polymer sample stretched above the glass transition temperature, the subsequent temperature-induced shrinkage is shown to be homogeneous and proceeds via the simultaneous diffusion of polymer chains within the whole volume of the polymer sample. When polymer deformation is carried out at temperatures below the glass transition temperature, the subsequent temperature-induced shrinkage within the volume of the polymer sample is inhomogeneous and proceeds via the movement of rather large polymer blocks that are separated by the regions of inelastically deformed polymer (shear bands or crazes).  相似文献   

2.
A direct microscopic observation procedure was used to study the processes of deformation and shrinkage of poly(vinyl chloride) above its glass transition temperature. Prior to stretching or contraction of the polymer, its surface was decorated with a thin (10–15 nm) metal layer. As a result of subsequent deformation (shrinkage), the decoration underwent structural rearrangements, which were detected by means of direct microscopic examination. These rearrangements contain information on the mechanism of deformation of the polymer substrate. In particular, the procedure makes it possible to characterize the process of development of the interface in the polymer during deformation and the reverse process of interface contraction during the shrinkage of the material. It was found that, in the case of an increase in the interfacial area, its growth is accompanied by a growth in imperfection of the polymer surface layer. These defects can concentrate mechanical stress, thus strongly affecting the fragmentation of the metal decoration on the polymer surface. It was shown that the surface defects could be eliminated by annealing of the polymer above its glass transition temperature. The introduction of a plasticizer that decreases the glass transition temperature below the deformation temperature likewise prevents the development of these defects during an increase in the surface area of the polymer in the process of its inelastic deformation.  相似文献   

3.
Thermally stimulated shrinkage of amorphous poly(ethylene terephthalate) and poly(vinyl chloride) oriented above their glass transition temperatures over a broad range of strain rates was studied by direct microscopic examination. The principle of revealing structural rearrangements is as follows. Before annealing, an oriented sample is coated with a thin (a few nanometers) metal layer. Subsequent annealing, which entails a change in the geometric dimensions of a polymer, leads to the appearance of a surface relief in the coating. The direct microscopic examination of the microrelief provides information on structural rearrangements in the polymer substrate. It was shown that identical microreliefs were formed in PVC independently of its preliminary stretching. For PET, it was found that the self-extension process in the direction of the draw axis was effected along with contraction during annealing. The superimposition of these processes is imaged as relief with two perpendicular folded structures. The obtained results give direct information on stress fields responsible for processes that occur in oriented polymers during their annealing; such information is difficult or even impossible to gain by any other means.  相似文献   

4.
The plane shrinkage of various elastomers [natural rubber, synthetic isoprene rubber, and plasticized poly(vinyl chloride)] at room temperature has been studied via direct microscopic observations. Prior to deformation, the surface of polymer samples is decorated with a thin (several nanometers) metallic layer. Further deformation leads to formation of the surface relief in the coating. An analysis of the formed microreliefs allows one to visualize and characterize the induced stress field in the sample. The shrinkage of poly(vinyl chloride) samples is accompanied by development of the uniform surface relief over the whole surface of the deformed polymer. This fact suggests a homogeneous character of the stress field and, hence, a homogeneous structure of the polymer sample. In the case of crosslinked rubbers (natural rubber and synthetic isoprene rubber), their plane shrinkage leads to the development of an irregular pattern on the polymer surface. In addition to the folded surface relief that is typical of the poly(vinyl chloride) structure, one can observe 20-to 50-μm “islands,” which are characterized by their own morphological features. Information on structural inhomogeneity of rubbers that is obtained by scanning electron microscopy correlates with the data of DSC measurements. The advantages of electron microscopic procedure for studying structural rearrangements in polymers during strain recovery of elastomers are demonstrated.  相似文献   

5.
A technique is proposed for decorating amorphous polymers: Before the deformation (shrinkage) of an amorphous polymer, its surface is decorated with a thin metal coating. The subsequent deformation is accompanied by surface structure formation, which makes the processes that occur in the polymer visible. The proposed technique makes it possible to visualize and describe the mechanism of transfer of the polymer from the surface into the bulk and vice versa and to obtain direct information about the direction of the actual local stress. The technique makes it possible to obtain information about the topological heterogeneity of rubber networks, to reveal the features of structural rearrangements that occur during the cold rolling of amorphous polymers, and to describe the phenomenon of self-elongation during annealing of the oriented PET. These microscopic data explain the following features of the structural and mechanical behavior of glassy polymers from a unified viewpoint: stress relaxation in a polymer in the elastic (Hookean) region of the stress-strain curve, an increase in stress in a deformed glassy polymer during its isometric annealing below T g, the low-temperature shrinkage of a deformed polymer glass in the strain range below its yield point, the storage of internal energy in a deformed glassy polymer in the strain range below the yield point, some anomalies of thermophysical properties, and some other features.  相似文献   

6.
Literature data on structural rearrangements taking place in amorphous glassy polymers upon their plastic deformation are analyzed. This deformation is shown to be primarily accompanied by polymer self-dispersion into fibrillar aggregates composed of oriented macromolecules with a diameter of 1—10 nm. The above structural rearrangements proceed independently of the deformation mode of polymers (cold drawing, crazing, or shear banding of polymers under the conditions of uniaxial drawing or uniaxial compression). Principal characteristics of the formed fibrils and the conditions providing their development are considered. Information on the properties of the fibrillated glassy polymers is presented, and the pathways of their possible practical application are highlighted.  相似文献   

7.
A direct microscopic observation procedure is applied to study the deformation of amorphous PET decorated with a thin metal layer when stretching is performed at different draw rates and at temperatures below and above the glass transition temperature T g. Analysis of the formed microrelief allows stress fields responsible for the deformation of the polymer to be visualized and characterized. When tensile drawing is performed at temperatures above T g, inhomogeneity of stress fields increases with the increasing draw rate; at high draw rates, the stress-induced crystallization of PET takes place. In the case of drawing the polymer at temperatures below T g, direct microscopic observations make it possible to visualize the development of shear bands that appear in the unoriented part of the polymer specimen adjacent to the neck. The shear bands are oriented at an angle of about 45° with respect to the draw direction. When necking involves the unoriented part of the polymer, shear bands abruptly change their orientation and become aligned practically parallel to the draw axis.  相似文献   

8.
A direct microscopic procedure is used for studying structural rearrangements during the annealing of PET samples after solvent crazing. Even at room temperature, solvent-crazed PET samples experience shrinkage which is provided by processes taking place in crazes. This shrinkage is observed at temperatures up to the glass transition temperature of PET and proceeds via drawing together of crack walls. Once the glass transition temperature is attained during annealing, the spontaneous self-elongation of the polymer sample occurs. The mechanism of this phenomenon is proposed. The low-temperature shrinkage of the polymer sample is related to the entropy contraction of highly dispersed material in crazes that has a lower glass transition temperature than that of the bulk polymer. This shrinkage cannot be complete, owing to crystallization of the oriented polymer in the volume of the crazes. As a result of crystallization, the oriented and crystallized polymer in the crazes coexists with the regions of the unoriented initial PET. As the annealing temperature approaches the glass transition temperature of the bulk PET, its strain-induced crystallization takes place. As a result, the regions of the unoriented polymer between crazes are elongated along the direction of tensile drawing and the sample experiences contraction in the normal direction.  相似文献   

9.
10.
A change in the surface structure of low-density polyethylene films upon chemical modification by gaseous fluorine has been studied by scanning electron microcopy and X-ray spectral analysis. It has been demonstrated that this treatment leads to formation of the wavy surface; its characteristics depend on the method of polymer synthesis and the initial structure of the test sample. A possible mechanism for structural changes in the surface layer of the polymer during fluorination is considered. It is suggested that the molar volume and the configuration of polymer macromolecules change in the course of replacement of hydrogen atoms with fluorine atoms. Mathematical modeling has been performed for the formation of the fluorinated layer with due regard for chemical transformations of macromolecules and structural heterogeneity of the polymers. The isosurfaces of the polymer with various degrees of fluorination calculated within the framework of the above model indicate that the fluorinated layer being formed is characterized by unequal thickness due to different rates of fluorine diffusion in amorphous and crystalline regions. It has been shown that the degree of fluorination of the polymer is dependent on the duration of treatment. This relationship is in satisfactory agreement with the previous experimental data.  相似文献   

11.
Using different microscopic techniques, we investigate the morphology and the micro-deformation processes in two entirely different classes of polymer based composites: natural biocomposites and synthetic polymer composites. The emphasis has been put on the comparison of the micromechanical properties of those composite materials. In the natural layered composites exemplified by human cortical bone, analogous to the synthetic glassy polymers, craze-like deformation zones were formed. A strong dependence of deformation mechanisms (such as transition from formation of single crazes to multiple crazing behaviour) on the layer dimension was observed in the layered composites made up of different amorphous polymers.  相似文献   

12.
We are proposing a lattice model with chemical input for the computer modelling of the polymer glass transition. The chemical input information is obtained by a coarse graining procedure applied to a microscopic model with full chemical detail. We use this information on Bisphenol-A-Polycarbonate to predict it's Vogel-Fulcher temperature out of a dynamic Monte Carlo Simulation. The microscopic structure of the lattice model is that of a genuine amorphous material, and the structural relaxation obeys the time temperature superposition.  相似文献   

13.
Heat effects and structural transformations in amorphous crystallizable poly(ethylene terephthalate) (PET) during uniaxial stretching accompanied by neck formation, have been investigated by calorimetric and x-ray methods over a wide range of temperatures and deformation rates. At small deformation (not exceeding 1–2%) and at temperatures below the glass transition temperature of the polymer, PET behaves as an elastic body. Upon stretching at a constant rate, constant heat power is absorbed, heat effects during loading and unloading coincide completely, and no hysteresis is observed. At large deformations (of the order of 50%), cold drawing develops in this temperature range. The internal energy change in cold drawing is zero within experimental error. A periodic heat release during the self-oscillation regime of drawing PET corresponds to periodic changes in stress, in the rate of the neck formation, and in the appearance of the sample. The temperature limits of the region where crystallization resulting from an uniaxial drawing of the polymer is possible, have been determined, and the heat effect of this phase transition has been measured. Orientation crystallization develops only from 70 to 94°C. These limits are insensitive to changes in deformation rate within one decimal order. The structure of PET in this temperature range has been investigated. The heat of phase transition of orientation crystallization of PET has been determined from the relationship between the measured values of the internal energy change during this process and the limiting degree of crystallinity for the stretched samples. This heat proves to be 5.5 ± 0.1 cal/g.  相似文献   

14.
15.
Poly(ethylene terephthalate) (PET) film was uniaxially stretched to a draw ratio of 2.5. Two samples were prepared from this oriented film by heat-setting it at 493 K while free to relax and when held at constant length. The structural changes occurring during uniaxial elongation up to fracture of these two oriented crystalline samples and their stress–strain characteristics were simultaneously monitored by rapid-scanning Fourier-transform infrared (FTIR) spectroscopy. In the free-annealed sample, the orientation of the molecules in the amorphous phase shows a gradual improvement throughout the test, while chain unfolding occurs above 20% strain. This indicates that the predominant mechanism of deformation in this sample could be chain uncoiling in the amorphous phase followed by longitudinal slip processes within the sample. In the taut-annealed sample, chain unfolding occurs at low strains accompanied by slight improvements in amorphous and crystalline orientation. Thus, in this sample longitudinal slip would appear to be the main deformation mechanism. The results of the FTIR measurements are discussed with reference to the dependence of the deformation mechanisms on the initial structure of the samples.  相似文献   

16.
The application of polymer blends depends mostly on their high ability to plastic deformation. Usually the studies of plastic deformation behavior include only the stress-deformation relationship and investigation of changes of morphology of the blends on the size level of inclusions. The energy absorption is also often considered. The presented, more rigorous, approach to plastic deformation of polymer blends containing a crystallizable component involves the studies of crystal plasticity and associated deformation of the amorphous phase. Plastic deformation of blends containing high-density polyethylene and isotactic poly(propylene) with other components were studied in two modes of deformation: 1. that avoids internal cavitation and 2. in tension with intense voiding. When no internal cavitation was involved, the plastic deformation was crystallographic in nature while the amorphous phase deformed in a manner to accommodate for the rotation and slips of the crystalline phase. Also the plastic deformation associated with intense voiding leads to a preferred orientation of certain crystallographic planes containing macromolecular chains which strongly suggests that the leading mechanisms in plastic deformation of blends are of crystallographic nature. The plastic deformation behavior depends very much on the glass transition of the amorphous component of the blend.  相似文献   

17.
A deep analogy between the processes of low-temperature thermally induced relaxation of plastic deformation in amorphous polymers and inorganic glasses is observed. The results of the calculation of the activation energy and activation volume of this relaxation process in terms of the excited state model satisfactorily agree with the experimental data obtained for both epoxy polymer systems and sheet silicate glasses. This evidence allows us to conclude that the initial stage of macroscopic plastic deformation in glassy systems involves small critical displacements of excited atoms (groups of atoms) that are provided by local rearrangements of neighboring particles (entropy fluctuations). In the vicinity of the yield point, the number of excited atoms per unit volume induced by the action of mechanical stresses appears to be quite sufficient (1026–1027 m?3) for promotion of a marked plastic deformation of glasses and preservation of appreciable amounts of internal energy.  相似文献   

18.
Preventing creaming or sedimentation by the addition of thickeners is an important industrial challenge. We study the effect of the addition of a "free" nonadsorbing polymer (xanthan gum) on the stability against creaming of sterically stabilized O/W emulsions. Therefore, we analyze our samples using microscopy and rheological measurements. At low xanthan concentrations, the emulsions cream. However, above a certain concentration a three-dimensional network of droplets is formed, which can prevent creaming. We attribute the formation of this structure to depletion attraction. The rheological behavior of an emulsion that is macroscopically stable should be elastic, while it should be viscous for a creaming emulsion. In order to distinguish between stable and unstable samples, we measure their relaxation time by mechanical rheology and find a good correlation to the visual observation. However, the measured relaxation times are much shorter than the time-scales, on which we observe creaming. We hypothesize that the measured relaxation time is related to the droplet-droplet interaction. This determines the frequency at which microscopic rearrangements occur, which weaken the network structure prior to creaming. Based on this interpretation, the relaxation time gives direct access to the microstructural processes involved in creaming. We therefore suggest using it as a predictive parameter of creaming stability.  相似文献   

19.
The effect of uniaxial orientational drawing and isometric annealing on the ratio of polymorphic modifications in the crystalline phase of poly(vinylidene fluoride) is studied. The role of drawing temperature and draw ratio in the structural rearrangements during polymer deformation is analyzed. The conditions providing the highest content of the polar crystalline phase in the polymer are determined. The mechanical properties of the films drawn at different temperatures are investigated.  相似文献   

20.
Structural rearrangements taking place upon the annealing of solvent-crazed isotactic PP are studied by the direct microscopic method. Independently of the type of its crystalline structure, solvent-crazed PP undergoes shrinkage in a wide temperature interval, starting even from room temperature and up to its melting temperature. This shrinkage is a result of the structural processes in crazes and proceeds via shutting down of the walls of individual crazes. This low-temperature shrinkage of solvent-crazed PP is assumed to have an entropy nature. This process involves the contraction of extended polymer chains and their transition into thermodynamically favorable conformations. This contraction is allowed because, upon annealing, the entropy contracting force increases. As a result, the crystalline framework of oriented PP melts down (amorphization), extended chains appear contracted, stored stresses relax, and subsequent recrystallization in the unstressed state takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号