首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of water on the interaction between iron(III) and indole-3-acetic acid (IAA) was studied in different organic solutions using rapid-scan stopped-flow spectrophotometry and rapid-freeze/quench Mössbauer spectroscopy. Measurements were also performed in ethanol–water and acetone–water mixtures. The results showed that the interaction between FeIII and IAA resulted in dimeric FeIII–IAA complex within 1 s, followed by a slow second step to give Fe2+ and IAA(oxidized). No such products were formed in the absence of water. The visible and Mössbauer spectra reflect the nature of the organic solvent and that of the anion of iron(III) salts.  相似文献   

2.
自旋交叉配合物的研究是分子磁化学中的一个重要领域,并已引起人们的普遍关注。近期我们合成了一个新的配体dpq(dpq=dipyrazine[2,3f:2,3h]quinoxaline )和新的自旋交叉配合物[Fe(dpq)2(NCS)2]·1.5H2O。通过元素分析、红外光谱、质谱、核磁共振、紫外光谱等方法对其结构进行了表征。变温磁化率和穆斯堡尔谱学的研究表明标题化合物是一个新颖的自旋交叉配合物,而且显示出不常见的15K回滞宽度,在降温时伴有一小台阶。通过对比发现,配体的共轭性在自旋交叉配合物中的影响是非常重要的。  相似文献   

3.
Some new iron(III) complexes of triazene 1-oxides are synthesised and characterised by analysis, magnetic, electronic and M?ssbauer spectra. They are found to be high spin Fe3+ systems.  相似文献   

4.
5.
Carbon-13 NMR studies on a series of high spin iron(III) porphyrins, namely tetraphenylporphyrin iron(III) halides [Fe(TPP) X, X=Cl, Br, I] in CDCl3 solution are reported. As expected the13C shifts are found to be an order of magnitude larger than the corresponding proton shifts. The dipolar contribution, which is quite important for the proton NMR, becomes much less significant for the13C shifts. No systematic variation in the13C shift across the series is observed, except for the meso-carbon which shows a small but gradual decrease in going from the chloro to the iodo complex. The13C shift for the various carbon atoms of the porphyrin ligand shows interesting pattern which is discussed in terms of spin delocalisation mechanisms.  相似文献   

6.
The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL? is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1?) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL? ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm?1.  相似文献   

7.
While six‐coordinate iron(III) porphyrin complexes with pyridine N‐oxides as axial ligands have been studied as they exhibit rare spin‐crossover behavior, studies of five‐coordinate iron(III) porphyrin complexes including neutral axial ligands are rare. A five‐coordinate pyridine N‐oxide–5,10,15,20‐tetraphenylporphyrinate–iron(III) complex, namely (pyridine N‐oxide‐κO)(5,10,15,20‐tetraphenylporphinato‐κ4N,N′,N′′,N′′′)iron(III) hexafluoroantimonate(V) dichloromethane disolvate, [Fe(C44H28N4)(C5H5NO)][SbF6]·2CH2Cl2, was isolated and its crystal structure determined in the space group P. The porphyrin core is moderately saddled and the Fe—O—N bond angle is 122.08 (13)°. The average Fe—N bond length is 2.03 Å and the Fe—ONC5H5 bond length is 1.9500 (14) Å. This complex provides a rare example of a five‐coordinate iron(III) porphyrin complex that is coordinated to a neutral organic ligand through an O‐monodentate binding mode.  相似文献   

8.
9.
Jie Mao  Qun He  Weisheng Liu 《Talanta》2010,80(5):2093-432
An “off-on” rhodamine-based fluorescence probe for the selective signaling of Fe(III) has been designed exploiting the guest-induced structure transform mechanism. This system shows a sharp Fe(III)-selective fluorescence enhancement response in 100% aqueous system under physiological pH value and possesses high selectivity against the background of environmentally and biologically relevant metal ions including Al(III), Cd(II), Fe(II), Co(II), Cu(II), Ni(II), Zn(II), Mg(II), Ba(II), Pb(II), Na(I), and K(I). Under optimum conditions, the fluorescence intensity enhancement of this system is linearly proportional to Fe(III) concentration from 6.0 × 10−8 to 7.2 × 10−6 mol L−1 with a detection limit of 1.4 × 10−8 mol L−1.  相似文献   

10.
The synthesis of the new complexes Cp*(dppe)FeCC2,5-C4H2SR (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; 2a, R = CCH; 2b, R = CCSi(CH3)3; 2c, R = CCSi(CH(CH3)2)3; 3a, R = CC2,5-C4H2SCCH; 3c, R = CC2,5-C4H2SCCSi(CH(CH3)2)3) is described. The 13C NMR and FTIR spectroscopic data indicate that the π-back donation from the metal to the carbon rich ligand increases with the size of the organic π-electron systems. The new complexes were also analyzed by CV and the chemical oxidation of 2a and 3c was carried out using 1 equiv of [Cp2Fe][PF6]. The corresponding complexes 2a[PF6] and 3c[PF6] are thermally stable, but 2a[PF6] was too reactive to be isolated as a pure compound. The spectroscopic data revealed that the coordination of large organic π-electron systems to the iron nucleus produces only a weak increase of the carbon character of the SOMO for these new organoiron(III) derivatives.  相似文献   

11.
Different molar reactions of Fe(OPr1)3, and FeCl3 with benzothiazolines having an NSH donor system. derived by the condensation ofo-aminothiophenol with heterocyclic aldehydes. viz. pyridine-2-aldehyde. furfuraldehyde and thiophene-2-aldehyde. lead to the formation of [Fe.Pr1(NS)2]2, [Fc(NS)3] and [Fe(NS)2Cl| type of complexes. The resulting derivatives have been characterized by elemental analysis, conductivity measurements, molecular weight determinations and magnetic studies. IR, electronic, M?ssbauer and ESR spectral data have been used to deduce the structures of the resulting derivatives.  相似文献   

12.
An Fe(II)-azido five-coordinate picket fence porphyrin complex with the formula [Na(2,2,2-crypt)][FeII(TpivPP)(N3)] · 3C6H5Cl (TpivPP = α,α,α,α-tetrakis(o-pivalamidophenyl)porphinato, known as a picket fence porphyrin, and 2,2,2-crypt is the cryptand-222) has been synthesized and characterized. The synthesis utilizes cryptand-222 to solubilize sodium azide in the preparation procedure. The UV–Vis and IR spectroscopic data are consistent with an azido ferrous porphyrinate. The X-ray structural analysis and the Mössbauer results indicate that the ion complex [FeII(TpivPP)(N3)] is high-spin and has the (dxy)2(dxz)1(dyz)1(dz2)1(dx2-y2)1(dxy)2(dxz)1(dyz)1(dz2)1(dx2-y2)1 ground state electronic configuration.  相似文献   

13.
DFT calculations have been performed to determine the isomer shift for a series of iron(II) clusters with nitrogen-containing ligands which serve as models of coordination units in Fe(II) complexes with 1,2,4-triazoles possessing a 1 A 1 ? 5 T 2 spin transition. Good agreement has been found between the theoretical and experimental values of the isomer shift for both low-and high-spin phases. Our calculations confirmed the hypothesis about relationship between the experimentally observed differences in the isomer shift for the low-spin phases of the complexes and variations of the Fe-N mean bond length.  相似文献   

14.
Thermal decomposition of a compound consisting of a tetrachloroferrate(III) anion and a quinolinium cation, of general formula [QH][FeCl4], has been studied using TG-FTIR, TG-MS, DTA and DTG techniques. The measurements were carried out in an argon atmosphere over the temperature range 20-800 °C. The solid products of the thermal decomposition were identified by IR, FIR and Mössbauer spectroscopy.  相似文献   

15.
A reversed flow injection colorimetric procedure for determining iron(III) at the μg level was proposed. It is based on the reaction between iron(III) with norfloxacin (NRF) in 0.07 mol l−1 ammonium sulfate solution, resulting in an intense yellow complex with a suitable absorption at 435 nm. Optimum conditions for determining iron(III) were investigated by univariate method. The method involved injection of a 150 μl of 0.04% w/v colorimetric reagent solution into a merged streams of sample and/or standard solution containing iron(III) and 0.07 mol l−1 ammonium sulfate in sulfuric acid (pH 3.5) solution which was then passed through a single bead string reactor. Subsequently the absorbance as peak height was monitored at 435 nm. Beer's law obeyed over the range of 0.2–1.4 μg ml−1 iron(III). The method has been applied to the determination of total iron in water samples digested with HNO3–H2O2 (1:9 v/v). Detection limit (3σ) was 0.01 μg ml−1 the sample through of 86 h−1 and the coefficient of variation of 1.77% (n=12) for 1 μg ml−1 Fe(III) were achieved with the recovery of the spiked Fe(III) of 92.6–99.8%.  相似文献   

16.
The electronic spectra of solid iron(III) vanadates FeVO4 and Fe2V4O13 were investigated by the diffuse reflectance technique in the spectral range 12 500–50 000 cm−1. The spectra of investigated vanadates contain 2–3 intensive CT bands in the UV region and two lowest energy dd bands in the 12 000–22 000 cm−1 range. The presence of the weak bands for FeVO4 and Fe2V4O13 at 16 500 cm−1 and 20 500 cm−1 points to the lattice deffects (oxygen deficiency and the presence of the V4+ ions) in the structure of investigated vanadates.  相似文献   

17.
18.
The thermal decomposition of alkali tris(maleato)ferrates(III), M3 [Fe(C2 H2 C2 O4 )3 ] (M =Li, Na, K) has been studied isothermally and non-isothermally employing simultaneous TG-DTG-DTA, XRD, Mössbauer and IR spectroscopic techniques. The anhydrous complexes decompose in the temperature range 215–300°C to yield Fe(II)maleate as an intermediate followed by demixing of the cations forming α-Fe2 O3 and alkali metal maleate/oxalate in successive stages. In the final stage of remixing of the cations (430–550°C) a solid state reaction occurs between α-Fe2 O3 and alkali metal carbonate leading to the formation of fine particles of respective ferrites. The thermal stabilities of the complexes have been compared with that of alkali tris(oxalato)ferrates(III).  相似文献   

19.
Coprecipitates of CdII, KI and FeIII with hexacyanoferrate ions [Fe(CN)6]4? have been studied by solid-state electrochemistry (voltammetry of immobilized microparticles), magnetic susceptibility measurements, X-ray powder diffraction, electron spin resonance, Mössbauer and diffuse reflectance spectroscopy. Most suprisingly, all experimental results point to the formation of a continuous series of complex mixed phases without the formation of phase mixtures. Although CdII and FeIII ions differ too much in their ionic radii to allow the formation of simple substitution mixed hexacyanoferrates, they are capable of forming different kinds of complex insertion and substitution mixed crystals because of the zeolitic structure of both the iron and the cadmium hexacyanoferrate. Low cadmium concentrations can be found in the zeolitic cavities of iron hexacyanoferrate (Prussian blue), and they start to widen the lattice and facilitate, at higher concentrations, the direct substitution of high-spin iron(III) ions by cadmium ions. In cases of an excess of cadmium, the formation of cadmium hexacyanoferrate with iron(III) ions in the interstitials of the zeolitic structure is observed. These mixed phases show strong charge transfer bands in the visible range and have the appearance of “diluted” Prussian blue. For the first time, this indicates that the charge transfer between the carbon-coordinated low-spin iron(II) ions and the high-spin iron(III) ions can also occur when the latter are situated in the cavities of a host hexacyanoferrate. In Prussian blue the interstitial iron(III) ions are responsible for a very strong charge transfer interaction between the low-spin iron(II) ions and the nitrogen-coordinated high-spin iron(III) ions. Upon substitution of the very small amount of interstitial iron(III) ions in Prussian blue by potassium and cadmium ions the Kubelka-Munk function diminishes by more than 30%, indicating a tremendous decrease in iron(III)-iron(II) interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号