首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The specific heat at a constant pressure (C p) and the velocity of sound (v) are measured for a moderate heavy-fermion compound YbZnCu4 in the temperature range 3.5–250 K and at 77 K, respectively. The experimental values of C p and v obtained in this study and the phonon thermal conductivity previously measured in the temperature range 5–300 K are used to calculate the phonon mean free path l for this compound. The temperature dependence of the phonon mean free path l thus determined is characteristic of classical amorphous materials.  相似文献   

2.
This paper reports on measurements of the heat capacity at constant pressure C p in the 80–300-K temperature interval and the thermopower coefficient S at 5–300 K of the carbon preform of sapele wood, which was prepared at the carbonization temperature of 1000°C. Measurements of C p (T), our previous data on the phonon thermal conductivity, and literature information on the sound velocity have been used to calculate the phonon mean free path l(T) for this material. It has been shown that within the temperature interval 200–300 K, l is constant and equal to 11 Å, a figure matching the size of the nanocrystallites (“graphite fragments”) making up the carbon framework of the sapele carbon preform. The high-temperature parts of S(T) have been found to follow a linear course characteristic of diffusive thermopower for the degenerate state of charge carriers, with only one type of charge carriers present. The anisotropy of the thermopower coefficient has been estimated.  相似文献   

3.
This paper reports on a measurement of the heat capacity at constant pressure (C p ) in the temperature range 3–320 K and the sound velocity (v) at 77 K for the “light” heavy-fermion compound YbMgCu4. The present experimental data on C p and v of YbMgCu4, combined with our earlier phonon thermal conductivity data for YbMgCu4 in the range 5–300 K, have been used to calculate the phonon mean free path l in this compound. The temperature dependence of l obtained is found to be characteristic of classical amorphous materials.  相似文献   

4.
This paper reports on measurements (in the temperature range T = 5–300 K) of the thermal conductivity κ(T) and electrical conductivity σ(T) of the high-porosity (~63 vol %) amorphous biocarbon preform with cellular pores, prepared by pyrolysis of sapele wood at the carbonization temperature 1000°C. The preform at 300 K was characterized using X-ray diffraction analysis. Nanocrystallites 11–30 Å in ize were shown to participate in the formation of the carbon network of sapele wood preforms. The dependences κ(T) and σ(T) were measured for the samples cut across and along empty cellular pore channels, which are aligned with the tree growth direction. Thermal conductivity measurements performed on the biocarbon sapele wood preform revealed a temperature dependence of the phonon thermal conductivity that is not typical of amorphous (and X-ray amorphous) materials. The electrical conductivity σ was found to increase with the temperature increasing from 5 to 300 K. The results obtained were analyzed.  相似文献   

5.
Natural composites (biocarbons) obtained by carbonization of beech wood at different carbonization temperatures T carb in the range of 800–2400°C have been studied using X-ray diffraction. The composites consist of an amorphous matrix and nanocrystallites of graphite and graphene. The volume fractions of the amorphous and nanocrystalline phases as functions of T carb have been determined. Temperature dependences of the phonon thermal conductivity κ(T) of the biocarbons with different temperatures T carb (1000 and 2400°C) have been analyzed in the range of 5–300 K. It has been shown that the behavior of κ(T) of the biocarbon with T carb = 1000°C is controlled by the amorphous phase in the range of 5–50 K and by the nanocrystalline phase in the range of 100–300 K. The character of κ(T) of the biocarbon with T carb = 2400°C is determined by the heat transfer (scattering) in the nanocrystalline phase over the entire temperature range of 5–300 K.  相似文献   

6.
This paper reports on measurements of the thermal conductivity κ and the electrical conductivity σ of high-porosity (cellular pores) biocarbon precursors of white pine tree wood in the temperature range 5–300 K, which were prepared by pyrolysis of the wood at carbonization temperatures (T carb) of 1000 and 2400°C. The x-ray structural analysis has permitted the determination of the sizes of the nanocrystallites contained in the carbon framework of the biocarbon precursors. The sizes of the nanocrystallites revealed in the samples prepared at T carb = 1000 and 2400°C are within the ranges 12–35 and 25–70 Å, respectively. The dependences κ(T) and σ(T) are obtained for samples cut along the tree growth direction. As follows from σ(T) measurements, the biocarbon precursors studied are semiconducting. The values of κ and σ increase with increasing carbonization temperature of the samples. Thermal conductivity measurements have revealed that samples of both types exhibit a temperature dependence of the phonon thermal conductivity κph, which is not typical of amorphous (and amorphous to x-rays) materials. As the temperature increases, κph first varies proportional to T, to scale subsequently as ~T 1.7. The results obtained are analyzed.  相似文献   

7.
The thermal conductivity k and resistivity ρ of biocarbon matrices, prepared by carbonizing medium-density fiberboard at T carb = 850 and 1500°C in the presence of a Ni-based catalyst (samples MDF-C( Ni)) and without a catalyst (samples MDF-C), have been measured for the first time in the temperature range of 5–300 K. X-ray diffraction analysis has revealed that the bulk graphite phase arises only at T carb = 1500°C. It has been shown that the temperature dependences of the thermal conductivity of samples MDFC- 850 and MDF-C-850(Ni) in the range of 80–300 K are to each other and follow the law of k(T) ~ T 1.65, but the use of the Ni-catalyst leads to an increase in the thermal conductivity by a factor of approximately 1.5, due to the formation of a greater fraction of the nanocrystalline phase in the presence of the Ni-catalyst at T carb = 850°C. In biocarbon MDF-C-1500 prepared without a catalyst, the dependence is k(T) ~ T 1.65, and it is controlled by the nanocrystalline phase. In MDF-C-1500(Ni), the bulk graphite phase formed increases the thermal conductivity by a factor of 1.5–2 compared to the thermal conductivity of MDF-C-1500 in the entire temperature range of 5–300 K; k(T = 300 K) reaches the values of ~10 W m–1 K–1, characteristic of biocarbon obtained without a catalyst only at high temperatures of T carb = 2400°C. It has been shown that MDF-C-1500(Ni) in the temperature range of 40?300 K is characterized by the dependence, k(T) ~ T 1.3, which can be described in terms of the model of partially graphitized biocarbon as a composite of an amorphous matrix with spherical inclusions of the graphite phase.  相似文献   

8.
A nanocomposite chrysotile-KDP (KH2PO4) was prepared. KDP was introduced into empty nanochannels of chrysotile asbestos with diameters of ~5 nm. Thermal conductivity κ and heat capacity at a constant pressure C p of the samples of chrysotile asbestos and nanocomposite chrysotile asbestos-KDP were measured in a temperature range of 80–300 K. Based on the analysis of the behavior of temperature dependences κ(T) and C p (T) of the composite, temperatures of the ferroelectric transition T F for KDP in nanochannels of chrysotile asbestos were determined. It turned out to be equal to ~250 K at T F ~ 122 K for massive KDP samples.  相似文献   

9.
The thermal conductivity κ and electrical resistivity ρ of a cellular ecoceramic, namely, the SiC/Si biomorphic composite, are measured in the temperature range 5–300 K. The SiC/Si biomorphic composite is fabricated using a cellular biocarbon template prepared from white eucalyptus wood by pyrolysis in an argon atmosphere with subsequent infiltration of molten silicon into empty through cellular channels of the template. The temperature dependences κ(T) and ρ(T) of the 3C-SiC/Si biomorphic composite at a silicon content of ~30 vol % are measured for samples cut out parallel and perpendicular to the direction of tree growth. Data on the anisotropy of the thermal conductivity κ are presented. The behavior of the dependences κ(T) and ρ(T) of the SiC/Si biomorphic composite at different silicon contents is discussed in terms of the results obtained and data available in the literature.  相似文献   

10.
This paper reports on the measurements of the thermal conductivity κ and electrical resistivity ρ in the temperature range 5–300 K and the heat capacity at constant pressure C p in the range 80–300 K for the metallic nonmagnetic compound LuMgCu4. The experimental values of κ and C p for the LuMgCu4 compound are compared with the corresponding data available in the literature for the light heavy-fermion compound YbMgCu4. It is shown that, in the low-temperature range (5–20 K), the phonon thermal conductivity κph of YbMgCu4 is lower than κph of LuMgCu4 as a result of phonon scattering from magnetic moment fluctuations of the Yb 4f electrons and, conversely, the heat capacity of LuMgCu4 in the range 80–300 K is lower than that of YbMgCu4 because the heat capacity of the latter compound has an additional magnetic component.  相似文献   

11.
This paper reports on measurements in the 80–300-K temperature interval of the heat capacity at constant pressure C p (T) of high-porosity amorphous white pine carbon preforms (biocarbon) prepared by pyrolysis (carbonization) at T carb = 1000 and 2400°C in an argon flow. The dependences C p (T) for biocarbon/copper composites based on the carbon preforms obtained have also been determined. It is shown that the mixture rule holds for the composites, i.e., that C p (T) of the composite is a sum of the heat capacities of the constituent materials taken in the corresponding ratios. Phonon mean free paths for the white pine carbon preforms prepared at T carb = 1000 and 2400°C have been calculated and used to estimate the size of the nanocrystallites contributing to formation of the carbon frameworks of these preforms.  相似文献   

12.
Temperature dependences of the electrical resistivity of samples of carbon nanoparticles obtained from nanodiamonds by annealing at 1800, 1900, and 2140 K were studied. The magnetoresistance of these samples was measured at 4.5 K. Data on the positive magnetoresistance obtained in fields above 3 T were used to estimate the mean free path l of carriers at liquid-helium temperature, l~12 Å for a sample annealed at 1800 K, l~80 Å for a sample annealed at 1900 K, and l~18 Å for the case of annealing at 2140 K. The samples annealed at 1800 and 2140 K exhibit a negative magnetoresistance in fields below 2 T. The carrier concentrations n in the samples annealed at 1800 and 2140 K were estimated as n~8×1021 and 3×1021 cm?3, respectively.  相似文献   

13.
Heat capacity of the PbMg1/3Nb2/3O3 compound is measured using the methods of adiabatic and differential scanning calorimetry in the temperature range 80–750 K. Two blurred anomalies on the C p (T) dependence are observed in wide temperature intervals of 200–400 K and 500–700 K. The results of studies are discussed together with data on the structure and phonon spectrum in the framework of spherical random bond-random field model.  相似文献   

14.
The thermal conductivity κ (within the range 4–300 K) and electrical conductivity σ (from 80 to 300 K) of polycrystalline Sm3S4 with the lattice parameter a=8.505 Å (with a slight off-stoichiometry toward Sm2S3) are measured. For T>95 K, charge transfer is shown to occur, as in stoichiometric Sm3S4 samples, by the hopping mechanism (σ ~ exp(?ΔE/kT) with ΔE ~ 0.13 eV). At low temperatures [up to the maximum in the lattice thermal conductivity κph(T)], κphT 2.6; in the range 20–50 K, κphT ?1.2; and for T>95 K, where the hopping charge-transfer mechanism sets in, κphT ?0.3 and a noticeable residual thermal resistivity is observed. It is concluded that in compounds with inhomogeneous intermediate rare-earthion valence, to which Sm3S4 belongs, electron hopping from Sm2+ (ion with a larger radius) to Sm3+ (ion with a smaller radius) and back generates local stresses in the crystal lattice which bring about a change in the thermal conductivity scaling of κph from T ?1.2 to T ?0.3 and the formation of an appreciable residual thermal resistivity.  相似文献   

15.
The heat capacity of the [[N(C2H5)4]2CdBr4 crystal is measured by the calorimetric method in the temperature range from 80 to 300 K. It is revealed for the first time that the temperature dependence of the heat capacity C p (T) exhibits an anomaly associated with the first-order phase transition occurring at the temperature T 1 = 226.5 K. A long relaxation of the temperature of the crystal is observed in the temperature range 150–165 K.  相似文献   

16.
This paper reports on comparative investigations of the structural and electrical properties of biomorphic carbons prepared from natural beech wood, as well as medium-density and high-density fiberboards, by means of carbonization at different temperatures T carb in the range 650–1000°C. It has been demonstrated using X-ray diffraction analysis that biocarbons prepared from medium-density and high-density fiberboards at all temperatures T carb contain a nanocrystalline graphite component, namely, three-dimensional crystallites 11–14 Å in size. An increase in the carbonization temperature T carb to 1000°C leads to the appearance of a noticeable fraction of two-dimensional graphene particles with the same sizes. The temperature dependences of the electrical resistivity ρ of the biomorphic carbons have been measured and analyzed in the temperature range 1.8–300 K. For all types of carbons under investigation, an increase in the carbonization temperature T carb from 600 to 900°C leads to a change in the electrical resistivity at T = 300 K by five or six orders of magnitude. The dependences ρ(T) for these materials are adequately described by the Mott law for the variable-range hopping conduction. It has been revealed that the temperature dependence of the electrical resistivity exhibits a hysteresis, which has been attributed to thermomechanical stresses in an inhomogeneous structure of the biocarbon prepared at a low carbonization temperature T carb. The crossover to the conductivity characteristic of disordered metal systems is observed at T carb ? 1000°C.  相似文献   

17.
The behavior of the thermal conductivity k(T) of bulk faceted fullerite C60 crystals is investigated at temperatures T=8–220 K. The samples are prepared by the gas-transport method from pure C60, containing less than 0.01% impurities. It is found that as the temperature decreases, the thermal conductivity of the crystal increases, reaches a maximum at T=15–20 K, and drops by a factor of ∼2, proportional to the change in the specific heat, on cooling to 8 K. The effective phonon mean free path λ p, estimated from the thermal conductivity and known from the published values of the specific heat of fullerite, is comparable to the lattice constant of the crystal λ pd=1.4 nm at temperatures T>200 K and reaches values λp∼50d at T<15 K, i.e., the maximum phonon ranges are limited by scattering on defects in the volume of the sample in the simple cubic phase. In the range T=25−75 K the observed temperature dependence k(T) can be described by the expression k(T)∼exp(Θ/bT), characteristic for the behavior of the thermal conductivity of perfect nonconducting crystals at temperatures below the Debye temperature Θ (Θ=80 K in fullerite), where umklapp phonon-phonon scattering processes predominate in the volume of the sample. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 8, 651–656 (25 April 1997)  相似文献   

18.
Phonon scattering by static stress fields of circular wedge disclination loops is investigated in the framework of the deformation potential approach. Numerical calculations of the mean free path l and thermal conductivity κ demonstrate that the temperature dependence of κ exhibits a minimum at a certain temperature T* in the low-temperature range. The thermal conductivity κ sharply increases as T ?3 with a decrease in temperature (T<T*) and exhibits a dislocation behavior (κ ~ T 2) with an increase in temperature (T>T*). The results obtained for the wedge disclination loop are compared with the available data for uniaxial disclination dipoles. It is shown that the properties of uniaxial disclination dipoles serving as sources of phonon scattering are similar to those of wedge disclination loops.  相似文献   

19.
The temperature dependences of the molar heat capacity at constant pressure, Cp, of Pb5(Ge1?xSix)3O11 crystals with x=0, 0.39, and 0.45 in the range 5–300 K, as well as of their permittivity, dielectric losses, and the pyroelectric effect, have been measured. Experimental data on the temperature behavior of the heat capacity are presented in the form of a sum of two Debye and one Einstein terms, Cp(T)=0.405CD1D1=160 K, T)+0.53CD2D2=750 K, T)+0.046CEE=47 K, T). Besides a peak in the region of the ferroelectric Curie point Tc=450 K for crystals with x=0, the temperature dependences of the heat capacity did not reveal any other pronounced anomalies.  相似文献   

20.
The dielectric properties of the [4-NH2C5H4NH] SbCl4 (abbreviated as 4-APCA) crystal were investigated under hydrostatic pressure up to 300 Mpa. The pressure-temperature phase diagram was given. The paraelectric-ferroelectric phase transition (II→III) temperature (Tc) increases linearly with increasing pressure with a slope dTc/dp=21×10−2 K/MPa. The pressure dependence of Curie-Weiss constants has been evaluated also. In the paraelectric phase (II) the Curie constant (C+) was pressure dependent whereas the C constant over the ferroelectric phase (III) was almost constant. The results are interpreted in terms of improper and displacive type phase transition model with a soft phonon at a zone boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号