首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Nuclear Physics B》1999,544(3):557-575
We study the decays of Higgs bosons to a lighter Higgs boson and a virtual gauge boson in the context of the non-supersymmetric two-Higgs doublet model (2HDM). We consider the phenomenological impact at LEP2 and find that such decays, when open, may be dominant in regions of parameter space and thus affect current Higgs boson search techniques. Three-body decays would be a way of producing light neutral Higgs bosons which have so far escaped detection at LEP due to suppressed couplings to the Z, and are of particular importance in the 2HDM (Model I) which allows both a light fermiophobic Higgs and a light charged scalar.  相似文献   

2.
The most general Two Higgs Doublet Model potential without explicit CP violation depends on 10 real independent parameters. Excluding spontaneous CP violation results in two 7 parameter models. Although both models give rise to 5 scalar particles and 2 mixing angles, the resulting phenomenology of the scalar sectors is different. If flavour changing neutral currents at tree level are to be avoided, one has, in both cases, four alternative ways of introducing the fermion couplings. In one of these models the mixing angle of the CP even sector can be chosen in such a way that the fermion couplings to the lightest scalar Higgs boson vanishes. At the same time it is possible to suppress the fermion couplings to the charged and pseudo-scalar Higgs bosons by appropriately choosing the mixing angle of the CP odd sector. We investigate the phenomenology of both models in the fermiophobic limit and present the different branching ratios for the decays of the scalar particles. We use the present experimental results from the LEP collider to constrain the models. Received: 21 July 1999 / Revised version: 6 September 1999 / Published online: 3 November 1999  相似文献   

3.
The CP-violating effects to the subprocess gg→H+H- are studied in the mSUGRA scenario at the CERN large hadron collider, by taking into account the experimental bounds of electron and neutron electric dipole moments. The CP-violating effects in this process are related to the complex phases of μ and Af in the mSUGRA scenario. In our calculation we consider small CP phases of μ and Af and neglect the effects of neutral Higgs boson mixing. In this case the CP effects to the process mainly come from the complex couplings of Higgs-squark-squark. We find a strong dependence of charged Higgs boson pair production rate on the complex couplings in the parameter space of minimal supersymmetric standard model.  相似文献   

4.
We present an up-to-date analysis of the constraints the precision data impose on the (CP-conserving) Two Higgs Doublet Model of type II with emphasis on the possible existence of very light neutral (pseudo)scalar Higgs boson with mass below 20–30 GeV. We show that even in the presence of such light particles, the 2HDM(II) can describe the electroweak data with the precision comparable to that given by the SM. Particularly interesting lower limits on the mass of the lighter neutral CP-even scalar are obtained in the scenario with light CP-odd Higgs boson and large . Received: 8 June 1999 / Published online: 14 October 1999  相似文献   

5.
We study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC with \(\sqrt{s} = 500\) GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling \(g_\chi \) is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator \(H_2\). The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for \(g_\chi \) approaching the perturbative limit, benchmark points with the mediator \(H_2\) in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising.  相似文献   

6.
We study the one-loop new physics effects to the CP even triple neutral gauge boson vertices γ γ Z, γ Z Z, Z Z γ and Z ZZ in the context of Little Higgs models. We compute the contribution of the additional fermions in Little Higgs models in the framework of direct product groups where [SU(2)×U(1)]2 gauge symmetry is embedded in SU(5) global symmetry and also in the framework of the simple group where SU(NU(1) gauge symmetry breaks down to SU(2) L ×U(1). We calculate the contribution of the fermions to these couplings when T parity is invoked. In addition, we re-examine the MSSM contribution at the chosen point of SPS1a′ and compare with the SM and Little Higgs models.  相似文献   

7.
We consider the two-Higgs-doublet model with explicit CP-violation, where the effective Higgs potential is not CP-invariant at the tree level. The three neutral Higgs bosons of the model are the mixtures of CP-even and CP-odd bosons which exist in the CP-conserving limit of the theory. The mass spectrum and tree-level couplings of the neutral Higgs bosons to gauge bosons and fermions are significantly dependent on the parameters of the Higgs boson mixing matrix. We calculate the Higgs-gauge boson, Higgs-fermion, triple and quartic Higgs self-interactions in the MSSM with explicit CP-violation in the Higgs sector and CP-violating Yukawa interactions of the third generation scalar quarks. In some regions of the MSSM parameter space substantial changes of the self-interaction vertices take place, leading to significant suppression or enhancement of the multiple Higgs boson production cross sections. Received: 13 June 2002 / Revised version: 20 November 2002 / Published online: 14 March 2003  相似文献   

8.
A number of candidate theories beyond the standard model (SM) predict new scalar bosons below the TeV region. Among these, the radion, which is predicted in the Randall-Sundrum model, and the dilaton, which is predicted by the walking technicolor theory, have very similar couplings to those of the SM Higgs boson, and it is very difficult to differentiate these three spin-0 particles in the expected signals of the Higgs boson at the LHC and Tevatron. We demonstrate that the observation of the ratio σ(γγ)/σ(WW) gives a simple and decisive way to differentiate these, independent of the values of model parameters, the vacuum expectation values of the radion, and dilaton fields.  相似文献   

9.
We calculate induced couplings of the type HVγ in the standard model, where H is a Higgs meson and V is a virtual or real neutral gauge boson (Z0 or photon). Numerous applications are given for e+e? collisions and various Higgs meson decays. The calculated rates are in general somewhat too low to make these processed an attractive way to search for the Higgs boson. However, once it has been found, it is argued that these processes should be studied experimentally since the induced couplings probe the structure of the gauge theory in an interesting way. In particular, it may be possible to infer the existence of one or more heavy fermion generations (of mass ?mZ) by observing their virtual effects in radiative decays into Higgs particles. We also briefly treat the related coupling HVγ with V a heavy quarkonium vector state.  相似文献   

10.
We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan β and m A . We observe that at fixed CM energy, in the SM, the total cross-section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM. The changes that occur for the MSSM in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross-section. The observed deviations in cross-section for different choices of Higgs boson masses suggest that the measurements of the cross-section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.   相似文献   

11.
The existence of exotic scalars that mix with the Standard Model (SM) Higgs boson can affect Higgs boson phenomenology in a multitude of ways. We consider two light Higgs bosons with shared couplings to SM fields and with masses close to each other, in the range where the h→WW→lνlνhWWlνlν is an important search channel. In this channel, we do not find the dilution of significance of the ‘SM-like’ Higgs boson that is naively expected because of the mixing. This is because of leakage of events from the other scalar into its signal region. Nevertheless, we show that the broadening of the h→WW→lνlνhWWlνlν significance plots of Standard Model Higgs boson searches could indicate the first evidence of the extra scalar state.  相似文献   

12.
We consider the extended Higgs models, in which one of the isospin doublet scalar fields carries the hypercharge Y=3/2. Such a doublet field Φ3/2 is composed of a doubly charged scalar boson as well as a singly charged one. We first discuss a simple model with Φ3/2 (Model I), and study its collider phenomenology at the LHC. We then consider a new model for radiatively generating neutrino masses with a dark matter candidate (Model II), in which Φ3/2 and an extra Y=1/2 doublet as well as vector-like singlet fermions carry the odd quantum number for an unbroken discrete Z2 symmetry. We also discuss the neutrino mass model (Model III), in which the exact Z2 parity in Model II is softly broken. It is found that the doubly charged scalar bosons in these models show different phenomenological aspects from those which appear in models with a Y=2 isospin singlet field or a Y=1 triplet one. They could be clearly distinguished at the LHC.  相似文献   

13.
The neutrino and Higgs sectors in the \(\text{ SU(2) }_1 \times \text{ SU(2) }_2 \times \text{ U(1) }_Y \) model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling \(\mu \). The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor \(c_h\), which must satisfy the recent global fit of experimental data, namely \(0.995<|c_h|<1\). We have analyzed a more general diagonalization of gauge boson mass matrices, then we show that the ratio of the tangents of the W\(W'\) and Z\(Z'\) mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed.  相似文献   

14.
The phenomenology of the low scale U(1)B–L extension of the standard model and its implications at LHC energies is presented. In this model, an extra gauge boson corresponding to B–L gauge symmetry and an extra SM singlet scalar (heavy Higgs boson) are predicted. We show a detailed analysis of both heavy and light Higgs bosons decay and production in addition to the possible decay channels of the new gauge boson. We find that the cross sections of the SM-like Higgs production are reduced by ∼20–30%, while its decay branching ratios remain intact. The extra Higgs boson has relatively small cross sections and the branching ratios of Z→l+l- are of order ∼20% to be compared to ∼3% of the SM results. Hence, the search for Z is accessible via a clean dilepton signal at LHC.  相似文献   

15.
We describe local field theories with continuously distributed mass. Such models can be realized as models in d > 4 space-time with Poincare invariance only in four-dimensional space-time. We also discuss some possible phenomenological consequences. Namely, we show that the Higgs boson phenomenology in the SM extension with continuously distributed Higgs boson mass can differ in a drastic way from the standard Higgs boson phenomenology.  相似文献   

16.
We present a detailed calculation of the contributions of charginos, scalar quarks, and charged Higgs boson to theK +π + vv andK L 0μ + μ decays. We include mixings: that of charginos and that of the scalar partners of the left and right handed top quark. We find that the box contribution to the amplitudes is much smaller than the penguin contribution, which can be ∼10% of the Standard Model contribution, even for relatively large SUSY masses. The charged Higgs contribution can be as large as 25% of the SM contribution in the first decay and as much as 40% of the SM contribution in the second decay.  相似文献   

17.
The latest Fermilab Collider Detector (CDF) anomaly, namely the excess of dijet events in the invariant-mass window 120–160 GeV in associated production with a W boson, is explained by a baryonic new neutral vector C-boson, of mass (145 GeV), predicted by the Wu mechanisms for mass generation of gauge field. The Standard Model (SM) W, Z-bosons normally get their masses through the coupling with the SM Higgs particle of mass 114–200 GeV. Here, the baryonic C-boson has negligible couplings with leptons and, thus, is unaffected by the dilepton C constraints.  相似文献   

18.
A search for neutral Higgs bosons has been performed using the full sample of Z0 decays collected by the OPAL detector at LEP up to 1995. The data were taken at centre-of-mass energies between 88 GeV and 95 GeV and correspond to an integrated luminosity of approximately 160 pb?1. The present search addresses the processes Z0→H0Z* and h0Z*, where H0 is the Higgs boson predicted by the Standard Model and h0 the lightest neutral scalar Higgs boson predicted in the framework of the Minimal Supersymmetric Standard Model. For the virtual Z0 boson, Z*, the following decay channels are considered: Z*→vv?, e+e? and μ+μ?. Two candidate events have been found in the vv?H0 channel and one in the μ+μ?H0 channel. Combined with earlier searches, the present search excludes the SM Higgs boson, at the 95% confidence level (CL), from the mass range below 59.6 GeV. In the framework of the Minimal Supersymmetric Standard Model, allowing a wide range of variation for most relevant model parameters, a 95% CL lower limit of 44.3 GeV is obtained for the mass of the h0 boson. Combined with earlier direct searches for the Higgs boson pair production process Z0→h0A0 and with measurements of the Z0 line shape, a 95% CL lower limit of 23.5 GeV is obtained for the mass of the pseudoscalar Higgs boson A0, assuming tan β≥ 1.  相似文献   

19.
The probabilities of the associated production of a Higgs boson with a Z boson by a charged lepton in the field of a plane electromagnetic wave of arbitrary intensity and in a constant crossed field are obtained. The behavior of the cross section of the process as a function of the particle energies and the external field intensity is investigated for various values of the Higgs boson mass. It is shown that there is a logarithmic increase in the photoproduction cross section at superhigh energies up to a value significantly exceeding the cross section of the reaction e ++e Z+H, which is presently regarded as the most probable channel for the production of Higgs bosons. Zh. éksp. Teor. Fiz. 113, 1979–1990 (June 1998)  相似文献   

20.
We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavor physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号