首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work we present a first attempt to quantify the effect of flow deformation on the microstructure of semicrystalline polymers. This necessitates bridging the macroscopic flow length scale with the microscopic (segment) length scale of the semicrystalline structure. To achieve this connection we developed a hierarchical approach where a thermodynamically consistent macroscopic constitutive equation is interfaced with a microscopic lattice-based Monte Carlo (MC) simulation of the polymer chain conformation. We first illustrate this approach in a two-dimensional (2D) “toy” application where the 2D equivalent of a macroscopic constitutive equation based on reptation theory is applied to describe the chain deformation and extended free energy in the amorphous bulk phase. The values for the derivative of the free energy with respect to the mean segment orientation tensor, calculated for a planar extensional flow, are then used as an extended nonequilibrium thermodynamic forcing term. This is added in a traditional Metropolis Monte Carlo scheme, developed for a 2D lattice representation of a lamellar semicrystalline polymer, to drive the flow-induced microstructure. Significant flow-induced changes are calculated, steadily increasing as the Weissenberg number increases.We subsequently extend these ideas further in a much more realistic three-dimensional (3D) application where the information for the thermodynamics of the bulk amorphous phase under a uniaxial extensional flow is extracted from a macroscopic network model, such as that of Phan-Thien and Tanner (PTT), connecting the free energy to the second moment of the end-to-end distance of a multisegment chain. Through a series of 3D nonequilibrium Monte Carlo simulations of both the amorphous and the semicrystalline microscopic morphologies, it is shown that the interaction of the flow-induced deformation with the semicrystalline microstructure is nonlinear: the amorphous interlamellar structure changes significantly from its corresponding homogeneous bulk amorphous state, even far away from the crystalline interface. Our approach allows for a quantitative estimation of this effect on both thermodynamic quantities, like the extended microscopic free energy, as well as various statistics of the chain conformations.  相似文献   

2.
The swelling deformation behavior of polymer gels is often described in terms of the Flory–Rehner framework, in which the Flory–Rehner free energy function is based on the simplest affine network model, does not take entanglements into account. However, the real polymer networks have many chain entanglements. In this paper, a new hybrid free energy function composed of the Edwards–Vilgis slip-link model and the Flory–Huggins solution theory is presented for the prediction of the influence of chain entanglements on mechanical behavior of gels. The simulation results of mechanical behavior in free swelling, uniaxial extension, biaxial constraint and simple shear are presented. It is shown that in the nonentangled state, this new hybrid free energy function reduces to the Flory–Rehner free energy function; in the entangled state, the influence of entanglements on the mechanical behavior of gels is significant, the more entangled networks exhibit higher stress.  相似文献   

3.
通过扭转试验对高聚物注浆材料剪切性能进行试验研究,并在扫描电子显微镜(scanning electron microscope, SEM) 下观测了试件断面处胞体形状破坏特征,在此基础上通过有限元数值模拟,对其剪切变形力学响应特征及剪应力分布规律进行了研究。结果表明:密度对高聚物材料的剪切强度及剪切模量影响显著,且随着高聚物材料密度的增加,其剪切强度和剪切模量被显著提升;高聚物材料胞体分布遵循能量最低原理,密度越大,胞体表面积越小,表面能越小,体系越稳定;面心立方体堆砌模型可以较好模拟材料剪切变形行为,且密度越大,拟合效果越好。  相似文献   

4.
Amorphous polymers lack an organized microstructure, yet they exhibit structural evolution, where physical properties change with time, temperature, and inelastic deformation. To describe the influence of structural evolution on the mechanical behavior of amorphous polymers, we developed a thermomechanical theory that introduces the effective temperature as a thermodynamic state variable representing the nonequilibrium configurational structure. The theory couples the evolution of the effective temperature and internal state variables to describe the temperature-dependent and rate-dependent inelastic response through the glass transition. We applied the theory to model the effect of temperature, strain rate, aging time, and plastic pre-deformation on the uniaxial compression response and enthalpy change with temperature of an acrylate network. The results showed excellent agreement with experiments and demonstrate the ability of the effective temperature theory to explain the complex thermomechanical behavior of amorphous polymers.  相似文献   

5.
A model for the saturation of the surface layer of a thin metal plate with an impurity from the environment under uniaxial mechanical loading is proposed and investigated. The effect of stresses and strains on the diffusion process is analyzed. It is shown that, first, due to the deformation of the crystal lattice of the base, stresses that occur in local volumes lead to a change in the diffusion activation energy; second, stresses influence impurity transfer (this effect is similar to mass transfer by pressure diffusion in liquids). The joint effect of the two types of influences of stresses and strains on the behavior of the system at various geometrical and physical sample parameters is numerically investigated.  相似文献   

6.
A new model is proposed that combines statistical mechanics and thermodynamic aspects to characterize orientation development, nucleation and growth of crystallites, and chain entanglement slippage with interdependent relationships necessary to accurately correlate and in some cases predict the morphology and mechanical behavior of semi-crystalline polymers during various thermo-mechanical processes in the rubbery state, close to the glass transition temperature. Internal state variables (ISVs) that directly represent the underlying microstructure state are used to characterize polymer morphology and the resulting properties throughout deformation. The model uses fundamental thermodynamic coefficients for polyethylene terephthalate (PET) and is correlated to experimental data at various strain rates and temperatures just above the glass transition temperature. Experimental data are used that measure the stress, amorphous orientation, and crystallinity during uniaxial deformation of PET. The model is found to correlate well to these experimental data.  相似文献   

7.
超弹性材料本构关系的最新研究进展   总被引:2,自引:0,他引:2  
彭向峰  李录贤 《力学学报》2020,52(5):1221-1234
超弹性材料是工程实际中的常用材料, 具有在外力作用下经历非常大变形、在外力撤去后完全恢复至初始状态的特征. 超弹性材料是典型的非线性弹性材料, 其性能可通过材料的应变能函数予以表征. 近几十年来, 围绕应变能函数形式的构造, 已提出许多超弹性材料本构关系研究的数学模型和物理模型, 但适用于多种变形模式和全变形范围的完全本构关系仍是该领域期待解决的重要问题. 本文从3个不同角度, 对超弹性材料本构关系研究的最新进展进行了总结和分析: (1)不同体积变化模式, 包含不可压与可压两种; (2)多变形模式, 包含单轴拉伸、剪切、等双轴以及复合拉剪等多个种类; (3)全范围变形程度, 包含小变形、中等变形到较大变形范围. 超弹性材料本构关系研究的最新进展表明, 为了全面描述具体材料的实验数据并在实际问题中应用超弹性材料, 需要建立适合于多种变形模式和全变形范围的可压超弹性材料的完全本构关系. 对实际超弹性材料完全本构关系的建立及可压超弹性材料应变能函数的构造, 笔者还提出了相应的实施步骤和研究方法.   相似文献   

8.
超弹性材料是工程实际中的常用材料, 具有在外力作用下经历非常大变形、在外力撤去后完全恢复至初始状态的特征. 超弹性材料是典型的非线性弹性材料, 其性能可通过材料的应变能函数予以表征. 近几十年来, 围绕应变能函数形式的构造, 已提出许多超弹性材料本构关系研究的数学模型和物理模型, 但适用于多种变形模式和全变形范围的完全本构关系仍是该领域期待解决的重要问题. 本文从3个不同角度, 对超弹性材料本构关系研究的最新进展进行了总结和分析: (1)不同体积变化模式, 包含不可压与可压两种; (2)多变形模式, 包含单轴拉伸、剪切、等双轴以及复合拉剪等多个种类; (3)全范围变形程度, 包含小变形、中等变形到较大变形范围. 超弹性材料本构关系研究的最新进展表明, 为了全面描述具体材料的实验数据并在实际问题中应用超弹性材料, 需要建立适合于多种变形模式和全变形范围的可压超弹性材料的完全本构关系. 对实际超弹性材料完全本构关系的建立及可压超弹性材料应变能函数的构造, 笔者还提出了相应的实施步骤和研究方法.  相似文献   

9.
To form an electrorheological network (ERN), semiconducting nanoparticles were embedded in a polymer that was cross-linked to restrict particle motion. The microstructure ranged from random to aligned, depending on the degree of field-induced particle alignment during chemical network formation. We investigated in detail the softness effects of the matrix, having a relatively low storage modulus, on the dynamic rheological behavior of the ERN and analyzed its anisotropy. The anisotropy of the microstructure was probed rheologically with the modes of small-amplitude oscillatory shear (loading perpendicular to the field direction) and compression (loading in the field direction). The storage shear modulus was found to be a function of the applied electric field, particle volume fraction, and the pre-alignment electric field strength during the cross-linking reaction of the matrix, which governs the thickness of particle columns and intercolumn distance. Nonlinear behavior at small strain (below 0.1%) was conspicuous; this nonlinear viscoelasticity was accompanied by only a limited deformation of ordered connectivity. Throughout this study, we fabricated the ERN with the highly controllable modulus-switching effect acting in a shear-mode operation. Managing this anisotropy of an ERN by the electrical and chemical process is important in the design of smart materials that will provide improved stability and mechanical strength compared with fluid-type electrorheological materials and faster response time compared with that of conventional charged polymer gel.  相似文献   

10.
Open celled metal foams fabricated through metal sintering are a new class of material that offers novel mechanical and acoustic properties. Previously, polymer foams have been widely used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a cost- effective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys. In this first part of two-paper series, the mechanical properties of open-celled steel alloy (FeCrAlY) foams were characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throughout the microstructure that result from the unique fabrication process. Further in situ tests were carried out in a SEM (scanning electronic microscope) in order to investigate the effects of defects on the properties of the foams. Typically, the onset of plastic yielding was observed to occur at defect locations within the microstructure. At lower relative densities, ligament bending dominates, with the deformation initializing at defects. At higher relative densities, an additional deformation mechanism associated with membrane elements was observed. In the follow-up of this paper, a finite element model will be constructed to quantify the effects of defects on the mechanical performance of the open-cell foam. The project supported by the US Office of Naval Research (N000140210117), the National Basic Research Program of China (2006CB601202), the National Natural Science Foundation of China (10328203, 10572111, 10632060), and the National 111 Project of China (B06024).  相似文献   

11.
On the stability of Kelvin cell foams under compressive loads   总被引:1,自引:0,他引:1  
It has been previously shown that the nonlinearity exhibited in the compressive response of open cell foams is governed by cell ligament buckling. Significant insight into this behavior can be gained by idealizing such foams as periodic, space-filling Kelvin cells assigned several of the geometric characteristics of actual foams. The cells are elongated in the rise direction; the ligaments are assumed to be straight, to have Plateau border cross sections, and nonuniform cross sectional area distribution. The mechanical response of such foams can be established using models of a characteristic cell assigned appropriate periodicity conditions. The ligaments are modeled as shear deformable beams. The periodicity of this microstructure allows the use of Bloch wave theory to conduct the search for the critical state efficiently. The method tailored to the present microstructure is outlined. It is subsequently used to establish the critical states for uniaxial and a set of triaxial loadings. A rich variety of buckling modes are identified which are affected by the anisotropy and the mutliaxiality of the applied loads. Under some loadings the critical modes have long wavelengths which are shown to lead to unstable postbuckling behavior involving localization. Under other loading conditions the modes are either local to the characteristic cell or involve an assemblage of a few such cells. For the cases analyzed local modes were found to have a stable postbuckling response.  相似文献   

12.
应用大规模分子动力学方法,采用粗粒化聚乙烯醇模型,模拟了晶区与非晶区随机交杂的半晶态聚合物模型系统,研究了半晶态聚合物在单轴拉伸变形过程中的应力-应变行为和微观结构演变.应力-应变曲线表现出4个典型变形阶段:弹性变形、屈服、应变软化和应变强化.在拉伸变形过程中,主要存在晶区折叠链之间的滑移、晶区破坏、非晶区的解缠结,以及分子链沿拉伸方向重新取向等4种主要的微结构演变形式.在屈服点附近,晶区分子链之间排列紧密程度减小而发生滑移,之后晶区变化需要的应力变小,从而形成应变软化现象.随着应变的增大,经各分子链段协同作用使非晶区分子链的解缠结和重新取向行为扩展到相对宏观尺度,导致拉伸应力增大而形成应变强化现象.   相似文献   

13.
This work is concerned with the thermal/mechanical characterization of the 6061 aluminum alloy stretched uniaxially in an elevated temperature environment. The resulting response is one of nonequilibrium where each local element reacts differently in terms of stress, strain and temperature. That is, the local strain and temperature rate change from one location to another with time. While the initial temperature in both the specimen and its surrounding are kept constant, thermal oscillation occurs when the specimen is strained uniaxially. The temperature in the solid decreases at first below the reference state and then increases. A reversal of heat flow takes place between the specimen and surrounding medium which typifies the nonequilibrium character of thermal/mechanical behavior in uniaxial specimens.Numerical results are obtained for loading rate of 1.27 × 10−4cm/s with initial equilibrium temperature of 25°, 75°, 125° and 175° C. Determined are the nonequilibrium conditions in the solid and on the surface. This is accomplished by considering a two-phase medium such that the surrounding air or gas can interact with the solid, both thermally and mechanically. The state of affairs at or near the solid/gas interface are transient in character; they cannot be preassigned as boundary conditions. The a priori specification of temperature and/or its gradient on solid cannot be justified as it can seriously affect analytical predictions.  相似文献   

14.
Palmetto wood is garnering growing interest as a template for creating biologically-inspired polymer composites due to its historical use as an energy absorbing material in protective structures. In this study, quasi-static three-point bend tests have been performed to characterize the mechanical behavior of Palmetto wood. Full-field deformation measurements are obtained using Digital Image Correlation (DIC) to elucidate on the strain fields associated with the mechanical response. By analyzing strain fields at multiple length scales, it is possible to study the more homogeneous mechanical behavior at the macro-scale associated with the global load-deformation response; while at the microscale the mechanical behavior is more inhomogeneous due to microstructural failure mechanisms. Thus, it was possible to determine that, despite the presence of discontinuous macro-fiber reinforcement, at the macro-scale the response is associated with classical bending and progressive failure processes that are adequately described by Weibull statistics proceeding from the tensile side of the specimen. At the microscale, however, the failure mechanisms giving rise to the macroscopic response consist of both shear-dominated debonding between the fiber and matrix, and inter-fiber matrix failure due to pore collapse. These microscale mechanisms are present in both the compressive and tensile regions of the specimen, most likely due to local macro-fiber bending, which is independent of the global bending state. The pore collapse mechanism observed during mechanical loading appears to improve the energy absorption of the matrix material, thereby, transferring less energy and shear strain to the macro-fiber-matrix interface for initiation of debonding. However, the pore collapse mechanism can also accumulate substantial shear strain, which results in matrix shear cracking. Through these complex failure mechanisms, Palmetto wood exhibits a high resistance to catastrophic failure after damage initiation, an observation that can be used as inspiration for creating new polymer composite materials.  相似文献   

15.
The mechanical response of engineering materials evaluated through continuum fracture mechanics typically assumes that a crack or void initially exists, but it does not provide information about the nucleation of such flaws in an otherwise flawless microstructure. How such flaws originate, particularly at grain (or phase) boundaries is less clear. Experimentally, “good” vs. “bad” grain boundaries are often invoked as the reasons for critical damage nucleation, but without any quantification. The state of knowledge about deformation at or near grain boundaries, including slip transfer and heterogeneous deformation, is reviewed to show that little work has been done to examine how slip interactions can lead to damage nucleation. A fracture initiation parameter developed recently for a low ductility model material with limited slip systems provides a new definition of grain boundary character based upon operating slip and twin systems (rather than an interfacial energy based definition). This provides a way to predict damage nucleation density on a physical and local (rather than a statistical) basis. The parameter assesses the way that highly activated twin systems are aligned with principal stresses and slip system Burgers vectors. A crystal plasticity-finite element method (CP-FEM) based model of an extensively characterized microstructural region has been used to determine if the stress–strain history provides any additional insights about the relationship between shear and damage nucleation. This analysis shows that a combination of a CP-FEM model augmented with the fracture initiation parameter shows promise for becoming a predictive tool for identifying damage-prone boundaries.  相似文献   

16.
The heterogeneity of deformation in ductile FCC single crystals is investigated by both numerical simulations and an analytic approach. The constitutive behaviour is based on a generalized storage recovery model and takes into account the interactions between slip systems previously obtained by dislocation dynamics simulations. In biaxial stretching, the simulations show the activation of a large number of slip systems and their localization in mutually excluding zones. As a result, a microstructure of lamellar type is formed in the early stages of the deformation. These numerical results are complemented by a linear stability analysis showing that the heterogeneous deformation pattern is triggered by instability modes of the single crystal. Furthermore, the interaction matrix is playing a key role as the partition is found to originate from slip system interactions. The partition is driven by the strongest interaction, which is in most cases the collinear interaction. A comparison with an experimental study in simple shear yields useful information about how to check the respective strength of some interactions. The collinear interaction is not involved in that case, but its effect can be verified by reproducing the experiment on a crystal with a different orientation.  相似文献   

17.
The Mullins effect in a rubberlike material subjected to a pure shear deformation is studied in the context of a recent theory of stress-softening for incompressible materials proposed by Beatty and Krishnaswamy. Some general technical results characterizing the mechanical response are presented. These show that the theory delivers results consistent with the overall behavior expected of a Mullins material, but usually exhibited in uniaxial extension or equibiaxial stretch experiments. The extent of stress-softening in a pure shear is shown to be much less than that due to an equibiaxial deformation, and only slightly greater than the degree of stress-softening induced by an uniaxial deformation, all to the same stretch. The Mullins effect in an equivalent simple shear deformation, even one having a rather large angle of shear, is small. The simple shear is the least damaging deformation among all of those mentioned here. Some graphical results, based on a special class of stress-softening materials applied to two parent material models – the familiar Mooney–Rivlin and a certain biotype material model, illustrate the general conclusions obtained for arbitrary Mullins materials. The inflation of a biomaterial membrane preconditioned in a pure shear deformation demonstrates the familiar stress-softening phenomenon observed in the inflation of a balloon.  相似文献   

18.
The large strain deformation response of amorphous polymers results primarily from orientation of the molecular chains within the polymeric material during plastic straining. Molecular network orientation is a highly anisotropic process, thus the observed mechanical response is strongly a function of the anisotropic state of these materials. Through mechanical testing and material characterization, the nature of the evolution of molecular orientation under different conditions of state of strain is developed. The role of developing anisotropy on the mechanical response of these materials is discussed in the context of assessing the capabilities of several models to predict the state of deformation-dependent response. A three-dimensional rubber elasticity spring system that is capable of capturing the state of deformation dependence of strain hardening is used to develop a tensorial internal state variable model of the evolving anisotropic polymer response. This fully three-dimensional constitutive model is shown to be successfully predictive of the true stress vs. true strain data obtained in our isothermal uniaxial compression and plane strain compression experiments on amorphous polycarbonate (PC) and polymethylmethacrylate (PMMA) at moderate strain rates. A basis is established for providing the polymer designer with the ability to predict the flow strengths and deformation patterns of highly anisotropic materials. A companion paper by Arruda, Boyce, and Quintus-Bosz [in press] shows how the model developed herein is used to predict various anisotropic aspects of the large strain mechanical response of preoriented materials. Additional work has been done to extend the model to include the effects of strain rate and temperature in Arruda, Jayachandran, and Boyce [in press].  相似文献   

19.
In this paper a hyperelastic constitutive model is developed for neo-Hookean composites with aligned continuous cylindrical pores in the finite elasticity regime. Although the matrix is incompressible, the composite itself is compressible because of the existence of voids. For this compressible transversely isotropic material, the deformation gradient can be decomposed multiplicatively into three parts: an isochoric uniaxial deformation along the preferred direction of the material (which is identical to the direction of the cylindrical pores here); an equi-biaxial deformation on the transverse plane (the plane perpendicular to the preferred direction); and subsequent shear deformation (which includes “along-fibre” shear and transverse shear). Compared to the multiplicative decomposition used in our previous model for incompressible fibre reinforced composites [Guo, Z., Peng, X.Q., Moran, B., 2006, A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54(9), 1952–1971], the equi-biaxial deformation is introduced to achieve the desired volume change. To estimate the strain energy function for this composite, a cylindrical composite element model is developed. Analytically exact strain distributions in the composite element model are derived for the isochoric uniaxial deformation along the preferred direction, the equi-biaxial deformation on the transverse plane, as well as the “along-fibre” shear deformation. The effective shear modulus from conventional composites theory based on the infinitesimal strain linear elasticity is extended to the present finite deformation regime to estimate the strain energy related to the transverse shear deformation, which leads to an explicit formula for the strain energy function of the composite under a general finite deformation state.  相似文献   

20.
试验机弹性储能对岩石力学性能测试的影响   总被引:5,自引:0,他引:5  
在材料试验机上进行岩石力学性能测试时,如何准确测量岩石的变形是整个测试分析的基础.为了具体考察试验机刚度对岩石变形测量的影响程度,在两台不同的试验机上进行了岩石的单轴压缩试验,通过对加卸载过程中试验系统及岩石能量变化的分析,详细研究了试验系统弹性储能对岩石变形测量的影响,进而给出了基于试验机刚度的修正计算方法,来确定岩石在测试过程中的变形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号