首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper is devoted to an alternative method to characterize platinum nanoparticles: X-ray powder diffraction with synchrotron radiation in classical and anomalous dispersion modes. We could straightforwardly determine the mean diameter and the surface concentration of carbon-supported platinum nanoparticles, even down to diameters of 2-3 nm and catalyst amounts of 0.03 mgcm(-2). We could study early stages of the formation of electrochemically prepared platinum nanoparticles from [PtCl4(2-) species preadsorbed on carbon inside a carbon-Nafion layer, to obtain a fuel-cell electrode. Our X-ray diffraction (XRD) results demonstrate that, provided the superficial concentration is not too high, new and smaller particles appear for each current pulse, since there is not any strong nucleation limitation for the high overvoltages obtained. Hydrogen evolution becomes the main electrochemical phenomenon on particles of sufficient size and it explains the noteworthy size limitation. Better yields of Pt metal are obtained for smaller current densities and longer times: the rate-determining step is then not electrochemical, but chemical or related to superficial diffusion.  相似文献   

3.
We have studied solutions of the surfactants cetyltrimethylammoniumbromide (CTAB) and dodecyltrimethylammoniumbromide (DTAB) in liquid ammonia with respect to the formation of lyotropic phases. For this purpose, a set-up for performing X-ray scattering experiments at temperatures up to 120 degrees C on samples containing liquid ammonia has been developed. Both systems form hexagonal and monoclinic lyotropic phases above the dissolving temperature of the surfactant, thus representing the first examples for lyotropic phases in liquid ammonia, and for monoclinic phases in nonaqueous solvents. The phase diagrams of CTAB/liquid NH(3) and DTAB/liquid NH(3) show similarities to their respective aqueous systems. However, the regions of existence of monoclinic phases are much larger in the ammonia system, while the cubic phases, as observed in the water based systems, do not seem to exist. The liquid-crystalline phases found provide potentiality for preparing mesoporous, nitride-based solids.  相似文献   

4.
X-ray diffraction with femtosecond time-resolution represents a direct probe of ultrafast structural changes in condensed matter. The generation of ultrashort X-ray pulses in laser-driven plasma and/or accelerator-based sources has made substantial progress, and has allowed for studies of transient structures with an unprecedented accuracy. Herein, recent work on transient crystalline structures is reviewed, with the focus on laser-based experiments.  相似文献   

5.
6.
7.
8.
9.
10.
This article describes the structure determination of five homoleptic d(10) metal-aryl/alkylacetylides [RC triple bond CM] (M=Cu, R=tBu 1, nPr 2, Ph 3; R=Ph, M=Ag 4; Au 5) by using X-ray single-crystal and powder diffraction. Complex 1.C6H6 reveals an unusual Cu20 catenane cluster structure that has various types of tBuC triple bond C-->Cu coordination modes. By using this single-crystal structure as a starting model for subsequent Rietveld refinement of X-ray powder diffraction data, the structure of the powder synthesized from CuI and tBuC triple bond CH was found to have the same structure as 1. Complex 2 has an extended sheet structure consisting of discrete zig-zag Cu4 subunits connected through bridging nPrC triple bond C groups. Complex 3 forms an infinite chain structure with extended Cu-Cu ladders (Cu-Cu=2.49(4)-2.83(2) A). The silver(I) congener 4 is iso-structural to 3 (average Ag-Ag distance 3.11 A), whereas the gold(I) analogue 5 forms a Au...Au honeycomb network with PhC triple bond C pillars (Au-Au=2.98(1)-3.26(1) A). Solid-state properties including photoluminescence, nu(C triple bond C) stretching frequencies and thermal stability of these polymeric systems are discussed in the context of the determined structures.  相似文献   

11.
12.
Although reliable determination of the molecular dipole moment from experimental charge density analyses on molecular crystals is a challenging undertaking, these values are becoming increasingly common experimental results. We collate all known experimental determinations and use this database to identify broad trends in the dipole moment enhancements implied by these measurements as well as outliers for which enhancements are pronounced. Compelling evidence emerges that molecular dipole moments from X-ray diffraction data can provide a wealth of information on the change in the molecular charge distribution that results from crystal formation. Most importantly, these experiments are unrivalled in their potential to provide this information in such detail and deserve to be exploited to a much greater extent. The considerable number of experimental determinations now available has enabled us to pinpoint those studies that merit further attention, either because they point unequivocally to a considerable enhancement in the crystal (of 50 % or more), or because the experimental determinations suggest enhancements of 100 % or more--much larger than independent theoretical estimates. In both cases further detailed experimental and theoretical studies are indicated.  相似文献   

13.
The halogenotrinitromethanes FC(NO2)3 ( 1 ), BrC(NO2)3 ( 2 ), and IC(NO2)3 ( 3 ) were synthesized and fully characterized. The molecular structures of 1 – 3 were determined in the crystalline state by X‐ray diffraction, and gas‐phase structures of 1 and 2 were determined by electron diffraction. The Hal?C bond lengths in F?, Cl?, and Br?C(NO2)3 in the crystalline state are similar to those in the gas phase. The obtained experimental data are interpreted in terms of Natural Bond Orbitals (NBO), Atoms in Molecules (AIM), and Interacting Quantum Atoms (IQA) theories. All halogenotrinitromethanes show various intra‐ and intermolecular non‐bonded interactions. Intramolecular N ??? O and Hal ??? O (Hal=F ( 1 ), Br ( 2 ), I ( 3 )) interactions, both competitors in terms of the orientation of the nitro groups by rotation about the C?N bonds, lead to a propeller‐type twisting of these groups favoring the mentioned interactions. The origin of the unusually short Hal?C bonds is discussed in detail. The results of this study are compared to the molecular structure of ClC(NO2)3 and the respective interactions therein.  相似文献   

14.
The molecular configuration and crystal structure of solid polycrystalline N,N′′‐diacetylbiuret (DAB), a potential nitrogen‐rich fertilizer, have been analyzed by a combination of solid‐ and liquid‐state NMR spectroscopy, X‐ray diffraction, and DFT calculations. Initially a pure NMR study (“NMR crystallography”) was performed as available single crystals of DAB were not suitable for X‐ray diffraction. Solid‐state 13C NMR spectra revealed the unexpected existence of two polymorphic modifications (α‐ and β‐DAB) obtained from different chemical procedures. Several NMR techniques were applied for a thorough characterization of the molecular system, revealing chemical shift anisotropy (CSA) tensors of selected nuclei in the solid state, chemical shifts in the liquid state, and molecular dynamics in the solid state. Dynamic NMR spectroscopy of DAB in solution revealed exchange between two different configurations, which raised the question, is there a correlation between the two different configurations found in solution and the two polymorphic modifications found in the solid state? By using this knowledge, a new crystallization protocol was devised which led to the growth of single crystals suitable for X‐ray diffraction. The X‐ray data showed that the same symmetric configuration is present in both polymorphic modifications, but the packing patterns in the crystals are different. In both cases hydrogen bonds lead to the formation of planes of DAB molecules. Additional symmetry elements, a two‐fold screw in the case of α‐DAB and a c‐glide plane in the case of β‐DAB, lead to a more symmetric (α‐DAB) or asymmetric (β‐DAB) intermolecular hydrogen‐bonding pattern for each molecule.  相似文献   

15.
16.
An approach to distinguish elements with similar atomic numbers in molecules and clusters is presented and applied to experimentally synthesized and structurally characterized mixed-metallic compounds. By first treating a homogenized reference system constructed from the original compound and applying first-order perturbation theory it is possible to find the most stable distribution of the atom types to the atomic sites in a very efficient way. This work is focused on the appropriate choice of homogenized reference systems and on applications treating experimentally synthesized compounds. With these examples is shown that the method is a helpful complement to X-ray crystal structure analysis.  相似文献   

17.
X-ray powder diffraction is a standard technique in materials chemistry, yet it is often still used in the laboratory as a "one-hit" technique, e.g. for fingerprinting and following the progress of reactions. It is important, however, that the wealth of information available from powder data is not overlooked. While it is only possible here to scratch the surface of possibilities, a range of examples from our research is used to emphasize some of the more accessible techniques and to highlight successes as well as potential problems. The first example is the study of solid solution formation in the oxide systems Ba(3-3x)La(2x)V2O8 and Sr(4-x)Ba(x)Mn3O10 and in the silicate-hydroxyapatite bioceramic, Ca10(PO4)6-x(SiO4)x(OH)2-x. Database mining is also explored, using three phases within the pseudobinary phase diagram Li3SbO4-CuO as examples. All three phases presented different challenges: the structure of Li3SbO4 had been previously reported in higher symmetry than was actually the case, Li3Cu2SbO6 was found to be isostructural with Li2TiO3 but the cation ordering had to be rationalized, and Li3CuSbO5 was believed to be triclinic, presenting challenges in indexing the powder pattern. Quantitative phase analysis is briefly discussed, with the emphasis both on success (determination of amorphous phase content in a novel cadmium arsenate phase) and on possible failure (compositional analysis in bone mineral); the reasons for the problems in the latter are also explored. Finally, the use of an area detector system has been shown to be of value in the study of orientational effects (or lack of them) in non- and partially-ordered biomaterials, including p-HEMA, annulus fibrosis of lumbar discs, and keratin in the horn of cow's hooves.  相似文献   

18.
19.
A comprehensive, time‐resolved, energy‐dispersive X‐ray diffraction study of the uptake of liquid alcohols (methanol, ethanol, propan‐1‐ol and propan‐2‐ol) by the flexible metal‐organic framework solid MIL‐53(Fe)[H2O] is reported. In the case of the primary alcohols, a fluorinated version of the MIL‐53(Fe) host (C2/c symmetry V ca. 1000 Å3), in which a fraction of framework hydroxides are replaced by fluoride, shows uptake of alcohols to give initially a partially expanded phase (C2/c symmetry, V ca. 1200 Å3) followed by an expanded form of the material (either Imcm or Pnam symmetry, V ca. 1600 Å3). In the case of methanol–water mixtures, the EDXRD data show that the partially open intermediate phase undergoes volume expansion during its existence, before switching to a fully open structure if concentrated methanol is used; analogous behaviour is seen if the initial guest is propan‐2‐ol, which then is replaced by pyridine, where a continuous shift of Bragg peaks within C2/c symmetry is observed. In contrast to the partially fluorinated materials, the purely hydroxylated host materials show little tendency to stabilise partially open forms of MIL‐53(Fe) with primary alcohols and the kinetics of guest introduction are markedly slower without the framework fluorination: this is exemplified by the exchange of water by propan‐2‐ol, where a partially open C2/c phase is formed in a step‐wise manner. Our study defines the various possible pathways of liquid‐phase uptake of molecular guests by flexible solid MIL‐53(Fe).  相似文献   

20.
Antimony(III) complexes of the general type LSbF(2) (3: L(1) =[tBuC(NiPr)(2)]; 4: L(2) =[tBuC(NDipp)(2) , Dipp=2,6-iPr(2)C(6)H(3)) and LSb(N(3))(2) (6: L(1); 7: L(2)) were prepared in high yields and characterized by elemental analyses, NMR and IR spectroscopy and single-crystal X-ray diffraction. Moreover, the solid-state structures of [L(2)SbF(2)][L(2)Li] (5), [L(2) AlH(2)] (1), and [L'H][L'K(thf)(3)] (2; L'=HC(NDipp)(2)) are described, in which the Li (5) and K atoms (2) adopt rather unusual coordination modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号